Show simple item record

contributor authorZhang, Hengyun
contributor authorWang, Zhaoqiang
date accessioned2017-11-25T07:16:49Z
date available2017-11-25T07:16:49Z
date copyright2017/7/3
date issued2017
identifier issn0022-1481
identifier otherht_139_05_051801.pdf
identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4234221
description abstractA formulation of the unit cell model and the corresponding thermal performance analysis for the cross-flow heat exchanger are carried out, with the design goal of dissipating 175 W from a high-power electronic chip in a compact space. A liquid to liquid heat exchanger in the cross-flow arrangement is preferred due to its compact size and high effectiveness. The unit cell model is formulated based on the volume-averaging method to determine the heat transfer coefficient involving two heat exchanging fluids and a solid. The various factors such as channel shape, channel edge length, channel size, and heat exchanger material can be examined based on the unit cell model. The obtained heat transfer coefficients are used for the estimation of the heat exchanger thermal performance based on the effectiveness–number of transfer units (NTU) correlation. To verify the model formulation, the heat and fluid flow over the cross-flow heat exchangers are investigated through the full-field numerical computation. The amount of heat exchanged from the numerical computation is extracted and compared with the predicted results from the unit cell model. A fairly good agreement is obtained between the two approaches. Based on the unit cell model, an aluminum cross heat exchanger with eight channel layers for the hot and cold fluids, 15 channels in each layer with a channel diameter of 2 mm, is able to meet the design target.
publisherThe American Society of Mechanical Engineers (ASME)
titleCross-Flow Heat Exchanger: Volume-Averaging Formulation of a Unit Cell Model and Thermal Performance Analysis
typeJournal Paper
journal volume139
journal issue5
journal titleJournal of Heat Transfer
identifier doi10.1115/1.4035997
journal fristpage51801
journal lastpage051801-10
treeJournal of Heat Transfer:;2017:;volume( 139 ):;issue: 005
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record