YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Two Objective and Independent Fracture Parameters for Interface Cracks

    Source: Journal of Applied Mechanics:;2017:;volume( 084 ):;issue: 004::page 41006
    Author:
    Zhao, Jia-Min
    ,
    Wang, He-Ling
    ,
    Liu, Bin
    DOI: 10.1115/1.4035932
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Due to the oscillatory singular stress field around a crack tip, interface fracture has some peculiar features. This paper is focused on two of them. One can be reflected by a proposed paradox that geometrically similar structures with interface cracks under similar loadings may have different failure behaviors. The other one is that the existing fracture parameters of the oscillatory singular stress field, such as a complex stress intensity factor, exhibit some nonobjectivity because their phase angle depends on an arbitrarily chosen length. In this paper, two objective and independent fracture parameters are proposed which can fully characterize the stress field near the crack tip. One parameter represents the stress intensity with classical unit of stress intensity factors. It is interesting to find that the loading mode can be characterized by a length as the other parameter, which can properly reflect the phase of the stress oscillation with respect to the distance to the crack tip. This is quite different from other crack tip fields in which the loading mode is usually expressed by a phase angle. The corresponding failure criterion for interface cracks does not include any arbitrarily chosen quantity and, therefore, is convenient for comparing and accumulating experimental results, even existing ones. The non-self-similarity of the stress field near an interface crack tip is also interpreted, which is the major reason leading to many differences between the interfacial fracture and the fracture in homogenous materials.
    • Download: (1.332Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Two Objective and Independent Fracture Parameters for Interface Cracks

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4233942
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorZhao, Jia-Min
    contributor authorWang, He-Ling
    contributor authorLiu, Bin
    date accessioned2017-11-25T07:16:18Z
    date available2017-11-25T07:16:18Z
    date copyright2017/23/2
    date issued2017
    identifier issn0021-8936
    identifier otherjam_084_04_041006.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4233942
    description abstractDue to the oscillatory singular stress field around a crack tip, interface fracture has some peculiar features. This paper is focused on two of them. One can be reflected by a proposed paradox that geometrically similar structures with interface cracks under similar loadings may have different failure behaviors. The other one is that the existing fracture parameters of the oscillatory singular stress field, such as a complex stress intensity factor, exhibit some nonobjectivity because their phase angle depends on an arbitrarily chosen length. In this paper, two objective and independent fracture parameters are proposed which can fully characterize the stress field near the crack tip. One parameter represents the stress intensity with classical unit of stress intensity factors. It is interesting to find that the loading mode can be characterized by a length as the other parameter, which can properly reflect the phase of the stress oscillation with respect to the distance to the crack tip. This is quite different from other crack tip fields in which the loading mode is usually expressed by a phase angle. The corresponding failure criterion for interface cracks does not include any arbitrarily chosen quantity and, therefore, is convenient for comparing and accumulating experimental results, even existing ones. The non-self-similarity of the stress field near an interface crack tip is also interpreted, which is the major reason leading to many differences between the interfacial fracture and the fracture in homogenous materials.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleTwo Objective and Independent Fracture Parameters for Interface Cracks
    typeJournal Paper
    journal volume84
    journal issue4
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.4035932
    journal fristpage41006
    journal lastpage041006-10
    treeJournal of Applied Mechanics:;2017:;volume( 084 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian