YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Quasi-Dimensional Diesel Engine Combustion Modeling With Improved Diesel Spray Tip Penetration, Ignition Delay, and Heat Release Submodels

    Source: Journal of Engineering for Gas Turbines and Power:;2017:;volume( 139 ):;issue: 011::page 112802
    Author:
    Xu, Shuonan
    ,
    Yamakawa, Hirotaka
    ,
    Nishida, Keiya
    ,
    Filipi, Zoran
    DOI: 10.1115/1.4036575
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Increasingly stringent fuel economy and CO2 emission regulations provide a strong impetus for development of high-efficiency engine technologies. Diesel engines dominate the heavy duty market and significant segments of the global light duty market due to their intrinsically higher thermal efficiency compared to spark-ignited (SI) engine counterparts. Predictive simulation tools can significantly reduce the time and cost associated with optimization of engine injection strategies, and enable investigation over a broad operating space unconstrained by availability of prototype hardware. In comparison with 0D/1D and 3D simulations, Quasi-Dimensional (quasi-D) models offer a balance between predictiveness and computational effort, thus making them very suitable for enhancing the fidelity of engine system simulation tools. A most widely used approach for diesel engine applications is a multizone spray and combustion model pioneered by Hiroyasu and his group. It divides diesel spray into packets and tracks fuel evaporation, air entrainment, gas properties, and ignition delay (induction time) individually during the injection and combustion event. However, original submodels are not well suited for modern diesel engines, and the main objective of this work is to develop a multizonal simulation capable of capturing the impact of high-injection pressures and exhaust gas recirculation (EGR). In particular, a new spray tip penetration submodel is developed based on measurements obtained in a high-pressure, high-temperature constant volume combustion vessel for pressures as high as 1450 bar. Next, ignition delay correlation is modified to capture the effect of reduced oxygen concentration in engines with EGR, and an algorithm considering the chemical reaction rate of hydrocarbon–oxygen mixture improves prediction of the heat release rates. Spray and combustion predictions were validated with experiments on a single-cylinder diesel engine with common rail fuel injection, charge boosting, and EGR.
    • Download: (3.240Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Quasi-Dimensional Diesel Engine Combustion Modeling With Improved Diesel Spray Tip Penetration, Ignition Delay, and Heat Release Submodels

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4233838
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorXu, Shuonan
    contributor authorYamakawa, Hirotaka
    contributor authorNishida, Keiya
    contributor authorFilipi, Zoran
    date accessioned2017-11-25T07:16:08Z
    date available2017-11-25T07:16:08Z
    date copyright2017/6/6
    date issued2017
    identifier issn0742-4795
    identifier othergtp_139_11_112802.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4233838
    description abstractIncreasingly stringent fuel economy and CO2 emission regulations provide a strong impetus for development of high-efficiency engine technologies. Diesel engines dominate the heavy duty market and significant segments of the global light duty market due to their intrinsically higher thermal efficiency compared to spark-ignited (SI) engine counterparts. Predictive simulation tools can significantly reduce the time and cost associated with optimization of engine injection strategies, and enable investigation over a broad operating space unconstrained by availability of prototype hardware. In comparison with 0D/1D and 3D simulations, Quasi-Dimensional (quasi-D) models offer a balance between predictiveness and computational effort, thus making them very suitable for enhancing the fidelity of engine system simulation tools. A most widely used approach for diesel engine applications is a multizone spray and combustion model pioneered by Hiroyasu and his group. It divides diesel spray into packets and tracks fuel evaporation, air entrainment, gas properties, and ignition delay (induction time) individually during the injection and combustion event. However, original submodels are not well suited for modern diesel engines, and the main objective of this work is to develop a multizonal simulation capable of capturing the impact of high-injection pressures and exhaust gas recirculation (EGR). In particular, a new spray tip penetration submodel is developed based on measurements obtained in a high-pressure, high-temperature constant volume combustion vessel for pressures as high as 1450 bar. Next, ignition delay correlation is modified to capture the effect of reduced oxygen concentration in engines with EGR, and an algorithm considering the chemical reaction rate of hydrocarbon–oxygen mixture improves prediction of the heat release rates. Spray and combustion predictions were validated with experiments on a single-cylinder diesel engine with common rail fuel injection, charge boosting, and EGR.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleQuasi-Dimensional Diesel Engine Combustion Modeling With Improved Diesel Spray Tip Penetration, Ignition Delay, and Heat Release Submodels
    typeJournal Paper
    journal volume139
    journal issue11
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4036575
    journal fristpage112802
    journal lastpage112802-17
    treeJournal of Engineering for Gas Turbines and Power:;2017:;volume( 139 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian