YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Application of Improved Artificial Bee Colony Algorithm to the Parameter Optimization of a Diesel Engine With Pilot Fuel Injections

    Source: Journal of Engineering for Gas Turbines and Power:;2017:;volume( 139 ):;issue: 011::page 112801
    Author:
    Zhang, Qiang
    ,
    Ogren, Ryan M.
    ,
    Kong, Song-Charng
    DOI: 10.1115/1.4036766
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Modern diesel engines are charged with the difficult problem of balancing emissions and efficiency. For this work, a variant of the artificial bee colony (ABC) algorithm was applied for the first time to the experimental optimization of diesel engine combustion and emissions. In this study, the employed and onlooker bee phases were modified to balance both the exploration and exploitation of the algorithm. The improved algorithm was successfully trialed against particle swarm optimization (PSO), genetic algorithm (GA), and a recently proposed PSO-GA hybrid with three standard benchmark functions. For the engine experiments, six variables were changed throughout the optimization process, including exhaust gas recirculation (EGR) rate, intake temperature, quantity and timing of pilot fuel injections, main injection timing, and fuel pressure. Low sulfur diesel fuel was used for all the tests. In total, 65 engine runs were completed in order to reduce a five-dimensional objective function. In order to reduce nitrogen oxide (NOx) emissions while keeping particulate matter (PM) below 0.09 g/kW h, solutions call for 43% exhaust gas recirculation, with a late main fuel injection near top-dead center. Results show that early pilot injections can be used with high exhaust gas recirculation to improve the combustion process without a large nitrogen oxide penalty when main injection is timed near top-dead center. The emission reductions in this work show the improved ABC algorithm presented here to be an effective new tool in engine optimization.
    • Download: (2.587Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Application of Improved Artificial Bee Colony Algorithm to the Parameter Optimization of a Diesel Engine With Pilot Fuel Injections

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4233837
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorZhang, Qiang
    contributor authorOgren, Ryan M.
    contributor authorKong, Song-Charng
    date accessioned2017-11-25T07:16:08Z
    date available2017-11-25T07:16:08Z
    date copyright2017/6/6
    date issued2017
    identifier issn0742-4795
    identifier othergtp_139_11_112801.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4233837
    description abstractModern diesel engines are charged with the difficult problem of balancing emissions and efficiency. For this work, a variant of the artificial bee colony (ABC) algorithm was applied for the first time to the experimental optimization of diesel engine combustion and emissions. In this study, the employed and onlooker bee phases were modified to balance both the exploration and exploitation of the algorithm. The improved algorithm was successfully trialed against particle swarm optimization (PSO), genetic algorithm (GA), and a recently proposed PSO-GA hybrid with three standard benchmark functions. For the engine experiments, six variables were changed throughout the optimization process, including exhaust gas recirculation (EGR) rate, intake temperature, quantity and timing of pilot fuel injections, main injection timing, and fuel pressure. Low sulfur diesel fuel was used for all the tests. In total, 65 engine runs were completed in order to reduce a five-dimensional objective function. In order to reduce nitrogen oxide (NOx) emissions while keeping particulate matter (PM) below 0.09 g/kW h, solutions call for 43% exhaust gas recirculation, with a late main fuel injection near top-dead center. Results show that early pilot injections can be used with high exhaust gas recirculation to improve the combustion process without a large nitrogen oxide penalty when main injection is timed near top-dead center. The emission reductions in this work show the improved ABC algorithm presented here to be an effective new tool in engine optimization.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleApplication of Improved Artificial Bee Colony Algorithm to the Parameter Optimization of a Diesel Engine With Pilot Fuel Injections
    typeJournal Paper
    journal volume139
    journal issue11
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4036766
    journal fristpage112801
    journal lastpage112801-9
    treeJournal of Engineering for Gas Turbines and Power:;2017:;volume( 139 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian