YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Ejector Application for Scavenging of an Aero Engine Bearing Chamber

    Source: Journal of Engineering for Gas Turbines and Power:;2017:;volume( 139 ):;issue: 010::page 101202
    Author:
    Flouros, Michael
    ,
    Salpingidou, Christina
    ,
    Yakinthos, Kyros
    ,
    Hirschmann, Markus
    ,
    Cottier, Francois
    DOI: 10.1115/1.4036516
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Oil system architecture in aero engines has remained almost the same for the last 35 years. At least one mechanically-driven oil feed pump is responsible for distributing pressurized oil into the bearing chambers and several scavenge pumps, also mechanically driven, are responsible for evacuating the bearing chambers from the oil and air mixture. Air is used as the sealing medium in bearing chambers and is the dominant medium in terms of volume occupation and expansion phenomena. In order to simplify the oil system architecture, improve the system's reliability with less mechanical parts, and also decrease weight, an ejector system has been designed for scavenging bearing chambers. In Flouros et al. (2013, “Ejector Scavenging of Bearing Chambers. A Numerical and Experimental Investigation,” ASME J. Eng. Gas Turbines Power, 135(8), p. 081602), an ejector system was presented which used aviation oil (MIL-PRF-23699 Std.) as the primary medium. In the course of further development, the original design was modified leading to a much smaller ejector. This ejector was tested in the rig using alternatively pressurized air or pressurized oil as primary medium. Additionally, three in-house developed primary nozzle (jet) designs were introduced and tested. The design of an ejector for application with compressible or incompressible media was supported through the development of an analysis tool. A momentum-based efficiency function is proposed herein and enables comparisons among different operating cases. Finally, ANSYS cfx (ANSYS, 2014, “ANSYS® CFX, Release 14.0,” ANSYS Inc., Canonsburg, PA) was used to carry out the numerical analysis. Similar to the ejector described in Flouros et al. (2013, “Ejector Scavenging of Bearing Chambers. A Numerical and Experimental Investigation,” ASME J. Eng. Gas Turbines Power, 135(8), p. 081602), the new design was also manufactured out of pure quartz glass to enable optical access. Through suitable instrumentation for pressures, temperatures, and air/oil flows, the performance characteristics of the new ejector were assessed and were compared to the analytic and numerical results. This work was partly funded by the German government within the research program Lufo4 (Luftfahrtforschungsprogramm 4/Aeronautical Research Program 4).
    • Download: (3.800Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Ejector Application for Scavenging of an Aero Engine Bearing Chamber

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4233799
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorFlouros, Michael
    contributor authorSalpingidou, Christina
    contributor authorYakinthos, Kyros
    contributor authorHirschmann, Markus
    contributor authorCottier, Francois
    date accessioned2017-11-25T07:16:04Z
    date available2017-11-25T07:16:04Z
    date copyright2017/16/5
    date issued2017
    identifier issn0742-4795
    identifier othergtp_139_10_101202.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4233799
    description abstractOil system architecture in aero engines has remained almost the same for the last 35 years. At least one mechanically-driven oil feed pump is responsible for distributing pressurized oil into the bearing chambers and several scavenge pumps, also mechanically driven, are responsible for evacuating the bearing chambers from the oil and air mixture. Air is used as the sealing medium in bearing chambers and is the dominant medium in terms of volume occupation and expansion phenomena. In order to simplify the oil system architecture, improve the system's reliability with less mechanical parts, and also decrease weight, an ejector system has been designed for scavenging bearing chambers. In Flouros et al. (2013, “Ejector Scavenging of Bearing Chambers. A Numerical and Experimental Investigation,” ASME J. Eng. Gas Turbines Power, 135(8), p. 081602), an ejector system was presented which used aviation oil (MIL-PRF-23699 Std.) as the primary medium. In the course of further development, the original design was modified leading to a much smaller ejector. This ejector was tested in the rig using alternatively pressurized air or pressurized oil as primary medium. Additionally, three in-house developed primary nozzle (jet) designs were introduced and tested. The design of an ejector for application with compressible or incompressible media was supported through the development of an analysis tool. A momentum-based efficiency function is proposed herein and enables comparisons among different operating cases. Finally, ANSYS cfx (ANSYS, 2014, “ANSYS® CFX, Release 14.0,” ANSYS Inc., Canonsburg, PA) was used to carry out the numerical analysis. Similar to the ejector described in Flouros et al. (2013, “Ejector Scavenging of Bearing Chambers. A Numerical and Experimental Investigation,” ASME J. Eng. Gas Turbines Power, 135(8), p. 081602), the new design was also manufactured out of pure quartz glass to enable optical access. Through suitable instrumentation for pressures, temperatures, and air/oil flows, the performance characteristics of the new ejector were assessed and were compared to the analytic and numerical results. This work was partly funded by the German government within the research program Lufo4 (Luftfahrtforschungsprogramm 4/Aeronautical Research Program 4).
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEjector Application for Scavenging of an Aero Engine Bearing Chamber
    typeJournal Paper
    journal volume139
    journal issue10
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4036516
    journal fristpage101202
    journal lastpage101202-11
    treeJournal of Engineering for Gas Turbines and Power:;2017:;volume( 139 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian