High-Frequency Thermoacoustic Modulation Mechanisms in Swirl-Stabilized Gas Turbine Combustors—Part I: Experimental Investigation of Local Flame ResponseSource: Journal of Engineering for Gas Turbines and Power:;2017:;volume( 139 ):;issue: 007::page 71501Author:Berger, Frederik M.
,
Hummel, Tobias
,
Hertweck, Michael
,
Kaufmann, Jan
,
Schuermans, Bruno
,
Sattelmayer, Thomas
DOI: 10.1115/1.4035591Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: This paper presents the experimental approach for determination and validation of noncompact flame transfer functions of high-frequency, transverse combustion instabilities observed in a generic lean premixed gas turbine combustor. The established noncompact transfer functions describe the interaction of the flame's heat release with the acoustics locally, which is necessary due to the respective length scales being of the same order of magnitude. Spatiotemporal dynamics of the flame are measured by imaging the OH⋆ chemiluminescence signal, phase-locked to the dynamic pressure at the combustor's front plate. Radon transforms provide a local insight into the flame's modulated reaction zone. Applied to different burner configurations, the impact of the unsteady heat release distribution on the thermoacoustic driving potential, as well as distinct flame regions that exhibit high modulation intensity, is revealed. Utilizing these spatially distributed transfer functions within thermoacoustic analysis tools (addressed in this joint publication's Part II) allows then to predict transverse linear stability of gas turbine combustors.
|
Show full item record
contributor author | Berger, Frederik M. | |
contributor author | Hummel, Tobias | |
contributor author | Hertweck, Michael | |
contributor author | Kaufmann, Jan | |
contributor author | Schuermans, Bruno | |
contributor author | Sattelmayer, Thomas | |
date accessioned | 2017-11-25T07:15:54Z | |
date available | 2017-11-25T07:15:54Z | |
date copyright | 2017/14/2 | |
date issued | 2017 | |
identifier issn | 0742-4795 | |
identifier other | gtp_139_07_071501.pdf | |
identifier uri | http://138.201.223.254:8080/yetl1/handle/yetl/4233730 | |
description abstract | This paper presents the experimental approach for determination and validation of noncompact flame transfer functions of high-frequency, transverse combustion instabilities observed in a generic lean premixed gas turbine combustor. The established noncompact transfer functions describe the interaction of the flame's heat release with the acoustics locally, which is necessary due to the respective length scales being of the same order of magnitude. Spatiotemporal dynamics of the flame are measured by imaging the OH⋆ chemiluminescence signal, phase-locked to the dynamic pressure at the combustor's front plate. Radon transforms provide a local insight into the flame's modulated reaction zone. Applied to different burner configurations, the impact of the unsteady heat release distribution on the thermoacoustic driving potential, as well as distinct flame regions that exhibit high modulation intensity, is revealed. Utilizing these spatially distributed transfer functions within thermoacoustic analysis tools (addressed in this joint publication's Part II) allows then to predict transverse linear stability of gas turbine combustors. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | High-Frequency Thermoacoustic Modulation Mechanisms in Swirl-Stabilized Gas Turbine Combustors—Part I: Experimental Investigation of Local Flame Response | |
type | Journal Paper | |
journal volume | 139 | |
journal issue | 7 | |
journal title | Journal of Engineering for Gas Turbines and Power | |
identifier doi | 10.1115/1.4035591 | |
journal fristpage | 71501 | |
journal lastpage | 071501-9 | |
tree | Journal of Engineering for Gas Turbines and Power:;2017:;volume( 139 ):;issue: 007 | |
contenttype | Fulltext |