YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Differential Equation-Based Specification of Turbulence Integral Length Scales for Cavity Flows

    Source: Journal of Engineering for Gas Turbines and Power:;2017:;volume( 139 ):;issue: 006::page 62508
    Author:
    Jefferson-Loveday, Richard J.
    DOI: 10.1115/1.4035602
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A new modeling approach has been developed that explicitly accounts for expected turbulent eddy length scales in cavity zones. It uses a hybrid approach with Poisson and Hamilton–Jacobi differential equations. These are used to set turbulent length scales to sensible expected values. For complex rim-seal and shroud cavity designs, the method sets an expected length scale based on local cavity width which accurately accounts for the large-scale wakelike flow structures that have been observed in these zones. The method is used to generate length scale fields for three complex rim-seal geometries. Good convergence properties are found, and a smooth transition of length scale between zones is observed. The approach is integrated with the popular Menter shear stress transport (SST) Reynolds-averaged Navier–Stokes (RANS) turbulence model and reduces to the standard Menter model in the mainstream flow. For validation of the model, a transonic deep cavity simulation is performed. Overall, the Poisson–Hamilton–Jacobi model shows significant quantitative and qualitative improvement over the standard Menter and k–ε two-equation turbulence models. In some instances, it is comparable or more accurate than high-fidelity large eddy simulation (LES). In its current development, the approach has been extended through the use of an initial stage of length scale estimation using a Poisson equation. This essentially reduces the need for user objectivity. A key aspect of the approach is that the length scale is automatically set by the model. Notably, the current method is readily implementable in an unstructured, parallel processing computational framework.
    • Download: (2.069Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Differential Equation-Based Specification of Turbulence Integral Length Scales for Cavity Flows

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4233721
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorJefferson-Loveday, Richard J.
    date accessioned2017-11-25T07:15:53Z
    date available2017-11-25T07:15:53Z
    date copyright2017/7/2
    date issued2017
    identifier issn0742-4795
    identifier othergtp_139_06_062508.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4233721
    description abstractA new modeling approach has been developed that explicitly accounts for expected turbulent eddy length scales in cavity zones. It uses a hybrid approach with Poisson and Hamilton–Jacobi differential equations. These are used to set turbulent length scales to sensible expected values. For complex rim-seal and shroud cavity designs, the method sets an expected length scale based on local cavity width which accurately accounts for the large-scale wakelike flow structures that have been observed in these zones. The method is used to generate length scale fields for three complex rim-seal geometries. Good convergence properties are found, and a smooth transition of length scale between zones is observed. The approach is integrated with the popular Menter shear stress transport (SST) Reynolds-averaged Navier–Stokes (RANS) turbulence model and reduces to the standard Menter model in the mainstream flow. For validation of the model, a transonic deep cavity simulation is performed. Overall, the Poisson–Hamilton–Jacobi model shows significant quantitative and qualitative improvement over the standard Menter and k–ε two-equation turbulence models. In some instances, it is comparable or more accurate than high-fidelity large eddy simulation (LES). In its current development, the approach has been extended through the use of an initial stage of length scale estimation using a Poisson equation. This essentially reduces the need for user objectivity. A key aspect of the approach is that the length scale is automatically set by the model. Notably, the current method is readily implementable in an unstructured, parallel processing computational framework.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDifferential Equation-Based Specification of Turbulence Integral Length Scales for Cavity Flows
    typeJournal Paper
    journal volume139
    journal issue6
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4035602
    journal fristpage62508
    journal lastpage062508-12
    treeJournal of Engineering for Gas Turbines and Power:;2017:;volume( 139 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian