YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Introduction of a New Numerical Simulation Tool to Analyze Micro Gas Turbine Cycle Dynamics

    Source: Journal of Engineering for Gas Turbines and Power:;2017:;volume( 139 ):;issue: 004::page 42601
    Author:
    Henke, Martin
    ,
    Monz, Thomas
    ,
    Aigner, Manfred
    DOI: 10.1115/1.4034703
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Micro gas turbine (MGT) technology is evolving toward a large variety of novel applications, such as weak gas electrification, inverted Brayton cycles, and fuel cell hybrid cycles; however, many of these systems show very different dynamic behaviors compared to conventional MGTs. In addition, some applications impose more stringent requirements on transient maneuvers, e.g., to limit temperature and pressure gradients in a fuel cell hybrid cycle. Besides providing operational safety, optimizing system dynamics to meet the variable power demand of modern energy markets is also of increasing significance. Numerical cycle simulation programs are crucial tools to analyze these dynamics without endangering the machines, and to meet the challenges of automatic control design. For these tasks, complete cycle simulations of transient maneuvers lasting several minutes need to be calculated. Moreover, sensitivity analysis and optimization of dynamic properties like automatic control systems require many simulation runs. To perform these calculations in an acceptable timeframe, simplified component models based on lumped volume or one-dimensional discretization schemes are necessary. The accuracy of these models can be further improved by parameter identification, as most novel applications are modifications of well-known MGT systems and rely on proven, characterized components. This paper introduces a modular in-house simulation tool written in fortran to simulate the dynamic behavior of conventional and novel gas turbine cycles. Thermodynamics, gas composition, heat transfer to the casing and surroundings, shaft rotation and control system dynamics as well as mass and heat storage are simulated together to account for their interactions. While the presented models preserve a high level of detail, they also enable calculation speeds up to five times faster than real-time. The simulation tool is explained in detail, including a description of all component models, coupling of the elements and the ODE solver. Finally, validation results of the simulator based on measurement data from the DLR Turbec T100 recuperated MGT test rig are presented, including cold start-up and shutdown maneuvers.
    • Download: (1.192Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Introduction of a New Numerical Simulation Tool to Analyze Micro Gas Turbine Cycle Dynamics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4233673
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorHenke, Martin
    contributor authorMonz, Thomas
    contributor authorAigner, Manfred
    date accessioned2017-11-25T07:15:47Z
    date available2017-11-25T07:15:47Z
    date copyright2016/2/11
    date issued2017
    identifier issn0742-4795
    identifier othergtp_139_04_042601.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4233673
    description abstractMicro gas turbine (MGT) technology is evolving toward a large variety of novel applications, such as weak gas electrification, inverted Brayton cycles, and fuel cell hybrid cycles; however, many of these systems show very different dynamic behaviors compared to conventional MGTs. In addition, some applications impose more stringent requirements on transient maneuvers, e.g., to limit temperature and pressure gradients in a fuel cell hybrid cycle. Besides providing operational safety, optimizing system dynamics to meet the variable power demand of modern energy markets is also of increasing significance. Numerical cycle simulation programs are crucial tools to analyze these dynamics without endangering the machines, and to meet the challenges of automatic control design. For these tasks, complete cycle simulations of transient maneuvers lasting several minutes need to be calculated. Moreover, sensitivity analysis and optimization of dynamic properties like automatic control systems require many simulation runs. To perform these calculations in an acceptable timeframe, simplified component models based on lumped volume or one-dimensional discretization schemes are necessary. The accuracy of these models can be further improved by parameter identification, as most novel applications are modifications of well-known MGT systems and rely on proven, characterized components. This paper introduces a modular in-house simulation tool written in fortran to simulate the dynamic behavior of conventional and novel gas turbine cycles. Thermodynamics, gas composition, heat transfer to the casing and surroundings, shaft rotation and control system dynamics as well as mass and heat storage are simulated together to account for their interactions. While the presented models preserve a high level of detail, they also enable calculation speeds up to five times faster than real-time. The simulation tool is explained in detail, including a description of all component models, coupling of the elements and the ODE solver. Finally, validation results of the simulator based on measurement data from the DLR Turbec T100 recuperated MGT test rig are presented, including cold start-up and shutdown maneuvers.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleIntroduction of a New Numerical Simulation Tool to Analyze Micro Gas Turbine Cycle Dynamics
    typeJournal Paper
    journal volume139
    journal issue4
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4034703
    journal fristpage42601
    journal lastpage042601-8
    treeJournal of Engineering for Gas Turbines and Power:;2017:;volume( 139 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian