YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Structural Deflection's Impact in Turbine Stator Well Heat Transfer

    Source: Journal of Engineering for Gas Turbines and Power:;2017:;volume( 139 ):;issue: 004::page 41901
    Author:
    Pohl, Julien
    ,
    Thompson, Harvey M.
    ,
    Guijarro Valencia, Antonio
    ,
    López Juste, Gregorio
    ,
    Fico, Vincenzo
    ,
    Clayton, Gary A.
    DOI: 10.1115/1.4034636
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In the most evolved designs, it is common practice to expose engine components to main annulus air temperatures exceeding the thermal material limit in order to increase the overall performance and to minimize the engine-specific fuel consumption (SFC). To prevent overheating of the materials and thus the reduction of the component life, an internal flow system is required to cool the critical engine parts and to protect them. This paper shows a practical application and extension of the methodology developed during the five-year research program, main annulus gas path interaction (MAGPI). Extensive use was made of finite element analysis (FEA (solids)) and computational fluid dynamics (CFD (fluid)) modeling techniques to understand the thermomechanical behavior of a dedicated turbine stator well cavity rig, due to the interaction of cooling air supply with the main annulus. Previous work based on the same rig showed difficulties in matching predictions to thermocouple measurements near the rim seal gap. In this investigation, two different types of turbine stator well geometries were analyzed, where—in contrast to previous analyses—further use was made of the experimentally measured radial component displacements during hot running in the rig. The structural deflections were applied to the existing models to evaluate the impact inflow interactions and heat transfer. Additionally, to the already evaluated test cases without net ingestion, cases simulating engine deterioration with net ingestion were validated against the available test data, also taking into account cold and hot running seal clearances. 3D CFD simulations were conducted using the commercial solver fluent coupled to the in-house FEA tool SC03 to validate against available test data of the dedicated rig.
    • Download: (3.346Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Structural Deflection's Impact in Turbine Stator Well Heat Transfer

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4233666
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorPohl, Julien
    contributor authorThompson, Harvey M.
    contributor authorGuijarro Valencia, Antonio
    contributor authorLópez Juste, Gregorio
    contributor authorFico, Vincenzo
    contributor authorClayton, Gary A.
    date accessioned2017-11-25T07:15:47Z
    date available2017-11-25T07:15:47Z
    date copyright2016/18/10
    date issued2017
    identifier issn0742-4795
    identifier othergtp_139_04_041901.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4233666
    description abstractIn the most evolved designs, it is common practice to expose engine components to main annulus air temperatures exceeding the thermal material limit in order to increase the overall performance and to minimize the engine-specific fuel consumption (SFC). To prevent overheating of the materials and thus the reduction of the component life, an internal flow system is required to cool the critical engine parts and to protect them. This paper shows a practical application and extension of the methodology developed during the five-year research program, main annulus gas path interaction (MAGPI). Extensive use was made of finite element analysis (FEA (solids)) and computational fluid dynamics (CFD (fluid)) modeling techniques to understand the thermomechanical behavior of a dedicated turbine stator well cavity rig, due to the interaction of cooling air supply with the main annulus. Previous work based on the same rig showed difficulties in matching predictions to thermocouple measurements near the rim seal gap. In this investigation, two different types of turbine stator well geometries were analyzed, where—in contrast to previous analyses—further use was made of the experimentally measured radial component displacements during hot running in the rig. The structural deflections were applied to the existing models to evaluate the impact inflow interactions and heat transfer. Additionally, to the already evaluated test cases without net ingestion, cases simulating engine deterioration with net ingestion were validated against the available test data, also taking into account cold and hot running seal clearances. 3D CFD simulations were conducted using the commercial solver fluent coupled to the in-house FEA tool SC03 to validate against available test data of the dedicated rig.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleStructural Deflection's Impact in Turbine Stator Well Heat Transfer
    typeJournal Paper
    journal volume139
    journal issue4
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4034636
    journal fristpage41901
    journal lastpage041901-10
    treeJournal of Engineering for Gas Turbines and Power:;2017:;volume( 139 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian