YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Wrinkling in Sandwich Structures With a Functionally Graded Core

    Source: Journal of Applied Mechanics:;2017:;volume( 084 ):;issue: 002::page 21002
    Author:
    Birman, Victor
    ,
    Vo, Nam
    DOI: 10.1115/1.4034990
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper illustrates the effectiveness of a functionally graded core in preventing wrinkling in sandwich structures. The problem is solved for piecewise and continuous through-the-thickness core stiffness variations. The analysis is extended to account for the effect of temperature on wrinkling of a sandwich beam with a functionally graded core. The applicability of the developed theory is demonstrated for foam cores where the stiffness is an analytical function of the mass density. In this case, a desirable variation of the stiffness can be achieved by varying the mass density through the thickness of the core. Numerical examples demonstrate that wrinkling stability of a facing can significantly be increased using a piecewise graded core. The best results are achieved locating the layers with a higher mass density adjacent to the facing. A significant increase in the wrinkling stress can eliminate wrinkling as a possible mode of failure, without noticeably increasing the weight of the structure. In the case of a uniform temperature applied in addition to compression, wrinkling in a sandwich beam with a functionally graded core is affected both by its grading as well as by the effect of temperature on the facing and core properties. Although even a moderately elevated temperature may significantly lower the wrinkling stress, the advantage of a graded core over the homogeneous counterpart is conserved.
    • Download: (457.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Wrinkling in Sandwich Structures With a Functionally Graded Core

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4233653
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorBirman, Victor
    contributor authorVo, Nam
    date accessioned2017-11-25T07:15:45Z
    date available2017-11-25T07:15:45Z
    date copyright2016/7/11
    date issued2017
    identifier issn0021-8936
    identifier otherjam_084_02_021002.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4233653
    description abstractThis paper illustrates the effectiveness of a functionally graded core in preventing wrinkling in sandwich structures. The problem is solved for piecewise and continuous through-the-thickness core stiffness variations. The analysis is extended to account for the effect of temperature on wrinkling of a sandwich beam with a functionally graded core. The applicability of the developed theory is demonstrated for foam cores where the stiffness is an analytical function of the mass density. In this case, a desirable variation of the stiffness can be achieved by varying the mass density through the thickness of the core. Numerical examples demonstrate that wrinkling stability of a facing can significantly be increased using a piecewise graded core. The best results are achieved locating the layers with a higher mass density adjacent to the facing. A significant increase in the wrinkling stress can eliminate wrinkling as a possible mode of failure, without noticeably increasing the weight of the structure. In the case of a uniform temperature applied in addition to compression, wrinkling in a sandwich beam with a functionally graded core is affected both by its grading as well as by the effect of temperature on the facing and core properties. Although even a moderately elevated temperature may significantly lower the wrinkling stress, the advantage of a graded core over the homogeneous counterpart is conserved.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleWrinkling in Sandwich Structures With a Functionally Graded Core
    typeJournal Paper
    journal volume84
    journal issue2
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.4034990
    journal fristpage21002
    journal lastpage021002-8
    treeJournal of Applied Mechanics:;2017:;volume( 084 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian