YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Evaluation of Compressor Blade Fouling

    Source: Journal of Engineering for Gas Turbines and Power:;2017:;volume( 139 ):;issue: 003::page 32601
    Author:
    Kurz, Rainer
    ,
    Musgrove, Grant
    ,
    Brun, Klaus
    DOI: 10.1115/1.4034501
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Fouling of compressor blades is an important mechanism leading to performance deterioration in gas turbines over time. Experimental and simulation data are available for the impact of specified amounts of fouling on the performance as well as the amount of foulants entering the engine for defined air filtration systems and ambient conditions. This study provides experimental data on the amount of foulants in the air that actually stick to a blade surface for different conditions. Quantitative results both indicate the amount of dust as well as the distribution of dust on the airfoil, for a dry airfoil, and also the airfoils that were wet from ingested water, in addition to, different types of oil. The retention patterns are correlated with the boundary layer shear stress. The tests show the higher dust retention from wet surfaces compared to dry surfaces. They also provide information about the behavior of the particles after they impact on the blade surface, showing for a certain amount of wet film thickness, the shear forces actually wash the dust downstream and off the airfoil. Further, the effect of particle agglomeration of particles to form larger clusters was observed, which would explain the disproportional impact of very small particles on boundary layer losses.
    • Download: (4.999Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Evaluation of Compressor Blade Fouling

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4233644
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorKurz, Rainer
    contributor authorMusgrove, Grant
    contributor authorBrun, Klaus
    date accessioned2017-11-25T07:15:44Z
    date available2017-11-25T07:15:44Z
    date copyright2016/4/10
    date issued2017
    identifier issn0742-4795
    identifier othergtp_139_03_032601.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4233644
    description abstractFouling of compressor blades is an important mechanism leading to performance deterioration in gas turbines over time. Experimental and simulation data are available for the impact of specified amounts of fouling on the performance as well as the amount of foulants entering the engine for defined air filtration systems and ambient conditions. This study provides experimental data on the amount of foulants in the air that actually stick to a blade surface for different conditions. Quantitative results both indicate the amount of dust as well as the distribution of dust on the airfoil, for a dry airfoil, and also the airfoils that were wet from ingested water, in addition to, different types of oil. The retention patterns are correlated with the boundary layer shear stress. The tests show the higher dust retention from wet surfaces compared to dry surfaces. They also provide information about the behavior of the particles after they impact on the blade surface, showing for a certain amount of wet film thickness, the shear forces actually wash the dust downstream and off the airfoil. Further, the effect of particle agglomeration of particles to form larger clusters was observed, which would explain the disproportional impact of very small particles on boundary layer losses.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleExperimental Evaluation of Compressor Blade Fouling
    typeJournal Paper
    journal volume139
    journal issue3
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4034501
    journal fristpage32601
    journal lastpage032601-7
    treeJournal of Engineering for Gas Turbines and Power:;2017:;volume( 139 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian