YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Applied Meteorology and Climatology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Impact of Parameterized Convection on the Simulation of Crop Processes

    Source: Journal of Applied Meteorology and Climatology:;2015:;volume( 054 ):;issue: 006::page 1283
    Author:
    Garcia-Carreras, L.
    ,
    Challinor, A. J.
    ,
    Parkes, B. J.
    ,
    Birch, C. E.
    ,
    Nicklin, K. J.
    ,
    Parker, D. J.
    DOI: 10.1175/JAMC-D-14-0226.1
    Publisher: American Meteorological Society
    Abstract: lobal climate and weather models are a key tool for the prediction of future crop productivity, but they all rely on parameterizations of atmospheric convection, which often produce significant biases in rainfall characteristics over the tropics. The authors evaluate the impact of these biases by driving the General Large Area Model for annual crops (GLAM) with regional-scale atmospheric simulations of one cropping season over West Africa at different resolutions, with and without a parameterization of convection, and compare these with a GLAM run driven by observations. The parameterization of convection produces too light and frequent rainfall throughout the domain, as compared with the short, localized, high-intensity events in the observations and in the convection-permitting runs. Persistent light rain increases surface evaporation, and much heavier rainfall is required to trigger planting. Planting is therefore delayed in the runs with parameterized convection and occurs at a seasonally cooler time, altering the environmental conditions experienced by the crops. Even at high resolutions, runs driven by parameterized convection underpredict the small-scale variability in yields produced by realistic rainfall patterns. Correcting the distribution of rainfall frequencies and intensities before use in crop models will improve the process-based representation of the crop life cycle, increasing confidence in the predictions of crop yield. The rainfall biases described here are a common feature of parameterizations of convection, and therefore the crop-model errors described are likely to occur when using any global weather or climate model, thus remaining hidden when using climate-model intercomparisons to evaluate uncertainty.
    • Download: (2.471Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Impact of Parameterized Convection on the Simulation of Crop Processes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4217430
    Collections
    • Journal of Applied Meteorology and Climatology

    Show full item record

    contributor authorGarcia-Carreras, L.
    contributor authorChallinor, A. J.
    contributor authorParkes, B. J.
    contributor authorBirch, C. E.
    contributor authorNicklin, K. J.
    contributor authorParker, D. J.
    date accessioned2017-06-09T16:50:35Z
    date available2017-06-09T16:50:35Z
    date copyright2015/06/01
    date issued2015
    identifier issn1558-8424
    identifier otherams-75128.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4217430
    description abstractlobal climate and weather models are a key tool for the prediction of future crop productivity, but they all rely on parameterizations of atmospheric convection, which often produce significant biases in rainfall characteristics over the tropics. The authors evaluate the impact of these biases by driving the General Large Area Model for annual crops (GLAM) with regional-scale atmospheric simulations of one cropping season over West Africa at different resolutions, with and without a parameterization of convection, and compare these with a GLAM run driven by observations. The parameterization of convection produces too light and frequent rainfall throughout the domain, as compared with the short, localized, high-intensity events in the observations and in the convection-permitting runs. Persistent light rain increases surface evaporation, and much heavier rainfall is required to trigger planting. Planting is therefore delayed in the runs with parameterized convection and occurs at a seasonally cooler time, altering the environmental conditions experienced by the crops. Even at high resolutions, runs driven by parameterized convection underpredict the small-scale variability in yields produced by realistic rainfall patterns. Correcting the distribution of rainfall frequencies and intensities before use in crop models will improve the process-based representation of the crop life cycle, increasing confidence in the predictions of crop yield. The rainfall biases described here are a common feature of parameterizations of convection, and therefore the crop-model errors described are likely to occur when using any global weather or climate model, thus remaining hidden when using climate-model intercomparisons to evaluate uncertainty.
    publisherAmerican Meteorological Society
    titleThe Impact of Parameterized Convection on the Simulation of Crop Processes
    typeJournal Paper
    journal volume54
    journal issue6
    journal titleJournal of Applied Meteorology and Climatology
    identifier doi10.1175/JAMC-D-14-0226.1
    journal fristpage1283
    journal lastpage1296
    treeJournal of Applied Meteorology and Climatology:;2015:;volume( 054 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian