Show simple item record

contributor authorGarcia-Carreras, L.
contributor authorChallinor, A. J.
contributor authorParkes, B. J.
contributor authorBirch, C. E.
contributor authorNicklin, K. J.
contributor authorParker, D. J.
date accessioned2017-06-09T16:50:35Z
date available2017-06-09T16:50:35Z
date copyright2015/06/01
date issued2015
identifier issn1558-8424
identifier otherams-75128.pdf
identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4217430
description abstractlobal climate and weather models are a key tool for the prediction of future crop productivity, but they all rely on parameterizations of atmospheric convection, which often produce significant biases in rainfall characteristics over the tropics. The authors evaluate the impact of these biases by driving the General Large Area Model for annual crops (GLAM) with regional-scale atmospheric simulations of one cropping season over West Africa at different resolutions, with and without a parameterization of convection, and compare these with a GLAM run driven by observations. The parameterization of convection produces too light and frequent rainfall throughout the domain, as compared with the short, localized, high-intensity events in the observations and in the convection-permitting runs. Persistent light rain increases surface evaporation, and much heavier rainfall is required to trigger planting. Planting is therefore delayed in the runs with parameterized convection and occurs at a seasonally cooler time, altering the environmental conditions experienced by the crops. Even at high resolutions, runs driven by parameterized convection underpredict the small-scale variability in yields produced by realistic rainfall patterns. Correcting the distribution of rainfall frequencies and intensities before use in crop models will improve the process-based representation of the crop life cycle, increasing confidence in the predictions of crop yield. The rainfall biases described here are a common feature of parameterizations of convection, and therefore the crop-model errors described are likely to occur when using any global weather or climate model, thus remaining hidden when using climate-model intercomparisons to evaluate uncertainty.
publisherAmerican Meteorological Society
titleThe Impact of Parameterized Convection on the Simulation of Crop Processes
typeJournal Paper
journal volume54
journal issue6
journal titleJournal of Applied Meteorology and Climatology
identifier doi10.1175/JAMC-D-14-0226.1
journal fristpage1283
journal lastpage1296
treeJournal of Applied Meteorology and Climatology:;2015:;volume( 054 ):;issue: 006
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record