YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Multiple Circular Inclusion Problems in Plane Elastostatics

    Source: Journal of Applied Mechanics:;1974:;volume( 041 ):;issue: 001::page 215
    Author:
    I.-W. Yu
    ,
    G. P. Sendeckyj
    DOI: 10.1115/1.3423228
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The problem of an unbounded elastic matrix containing any number of elastic inclusions is considered. The inclusions can have any radii and elastic moduli. Furthermore, the spacing of the inclusions can be arbitrary. The solution for the cases of uniaxial tension and in-plane bending is found by the Schwarz alternating method. Graphical results are presented for a number of examples.
    keyword(s): Elastic moduli AND Tension ,
    • Download: (658.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Multiple Circular Inclusion Problems in Plane Elastostatics

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/164551
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorI.-W. Yu
    contributor authorG. P. Sendeckyj
    date accessioned2017-05-09T01:37:46Z
    date available2017-05-09T01:37:46Z
    date copyrightMarch, 1974
    date issued1974
    identifier issn0021-8936
    identifier otherJAMCAV-26002#215_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/164551
    description abstractThe problem of an unbounded elastic matrix containing any number of elastic inclusions is considered. The inclusions can have any radii and elastic moduli. Furthermore, the spacing of the inclusions can be arbitrary. The solution for the cases of uniaxial tension and in-plane bending is found by the Schwarz alternating method. Graphical results are presented for a number of examples.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMultiple Circular Inclusion Problems in Plane Elastostatics
    typeJournal Paper
    journal volume41
    journal issue1
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.3423228
    journal fristpage215
    journal lastpage221
    identifier eissn1528-9036
    keywordsElastic moduli AND Tension
    treeJournal of Applied Mechanics:;1974:;volume( 041 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian