YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    On the Inflation of a Plane Nonlinear Membrane

    Source: Journal of Applied Mechanics:;1974:;volume( 041 ):;issue: 003::page 767
    Author:
    W. W. Feng
    ,
    P. Huang
    DOI: 10.1115/1.3423385
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The deformed configurations of an inflated flat nonlinear membrane are obtained by the minimum potential energy principle. The deformed configurations of the membrane are assumed to be represented by a series of geometric admissible functions with unknown coefficients. The unknown coefficients that minimize the total potential energy of the deformed membrane are determined by Fletcher and Powell’s [1] method. The strain-energy-density function for the numerical calculations is assumed to have the Mooney form. The results for a particular case when the Mooney membrane reduces to the neo-Hookean membrane, agree with the previous results obtained by numerical integration of the corresponding equilibrium equations.
    keyword(s): Inflationary universe , Membranes , Potential energy , Density , Equilibrium (Physics) , Equations AND Functions ,
    • Download: (363.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      On the Inflation of a Plane Nonlinear Membrane

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/164409
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorW. W. Feng
    contributor authorP. Huang
    date accessioned2017-05-09T01:37:31Z
    date available2017-05-09T01:37:31Z
    date copyrightSeptember, 1974
    date issued1974
    identifier issn0021-8936
    identifier otherJAMCAV-26015#767_1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/164409
    description abstractThe deformed configurations of an inflated flat nonlinear membrane are obtained by the minimum potential energy principle. The deformed configurations of the membrane are assumed to be represented by a series of geometric admissible functions with unknown coefficients. The unknown coefficients that minimize the total potential energy of the deformed membrane are determined by Fletcher and Powell’s [1] method. The strain-energy-density function for the numerical calculations is assumed to have the Mooney form. The results for a particular case when the Mooney membrane reduces to the neo-Hookean membrane, agree with the previous results obtained by numerical integration of the corresponding equilibrium equations.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleOn the Inflation of a Plane Nonlinear Membrane
    typeJournal Paper
    journal volume41
    journal issue3
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.3423385
    journal fristpage767
    journal lastpage771
    identifier eissn1528-9036
    keywordsInflationary universe
    keywordsMembranes
    keywordsPotential energy
    keywordsDensity
    keywordsEquilibrium (Physics)
    keywordsEquations AND Functions
    treeJournal of Applied Mechanics:;1974:;volume( 041 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian