YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Heat Pump Water Heater Control Strategy Optimization for Cold Climates

    Source: Journal of Solar Energy Engineering:;2016:;volume( 138 ):;issue: 001::page 11011
    Author:
    Bursill, Jayson
    ,
    Cruickshank, Cynthia A.
    DOI: 10.1115/1.4032144
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper presents a study which was conducted to evaluate the performance of a commercially available heat pump water heater (HPWH) with modified controls. The HPWH is first characterized experimentally under a series of different thermal conditions and draw parameters. The test tank contains a 1500 W electric auxiliary heater that provides on demand heat to the top 0.30 m (1 ft) of the tank, and a wraparound heating coil. An air source heat pump (ASHP), using R134A as the refrigerant, draws air from, and returns air to the surrounding space and provides heating to the whole tank through the coil. The tank has been tested using Canadian Standards Association draw profiles to characterize performance under different hot water demands. Electricity consumption and thermal flux is measured for each vertical tank section, and various performance metrics are calculated using energy balances. A trnsys model is then calibrated to the experimental data to allow for the flexibility of varying multiple parameters over various climates. Using this calibrated trnsys model, an optimal control strategy and tank setpoints can be determined for use in cold climates. As expected from previous work, there is a decrease in performance of the HP when heating the tank to higher temperatures to facilitate thermal storage, but the benefits from taking advantage of shifting electrical demand (of water heating) to space heating demand can outweigh the loss of performance.
    • Download: (1.161Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Heat Pump Water Heater Control Strategy Optimization for Cold Climates

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/162443
    Collections
    • Journal of Solar Energy Engineering

    Show full item record

    contributor authorBursill, Jayson
    contributor authorCruickshank, Cynthia A.
    date accessioned2017-05-09T01:33:00Z
    date available2017-05-09T01:33:00Z
    date issued2016
    identifier issn0199-6231
    identifier othersol_138_01_011011.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/162443
    description abstractThis paper presents a study which was conducted to evaluate the performance of a commercially available heat pump water heater (HPWH) with modified controls. The HPWH is first characterized experimentally under a series of different thermal conditions and draw parameters. The test tank contains a 1500 W electric auxiliary heater that provides on demand heat to the top 0.30 m (1 ft) of the tank, and a wraparound heating coil. An air source heat pump (ASHP), using R134A as the refrigerant, draws air from, and returns air to the surrounding space and provides heating to the whole tank through the coil. The tank has been tested using Canadian Standards Association draw profiles to characterize performance under different hot water demands. Electricity consumption and thermal flux is measured for each vertical tank section, and various performance metrics are calculated using energy balances. A trnsys model is then calibrated to the experimental data to allow for the flexibility of varying multiple parameters over various climates. Using this calibrated trnsys model, an optimal control strategy and tank setpoints can be determined for use in cold climates. As expected from previous work, there is a decrease in performance of the HP when heating the tank to higher temperatures to facilitate thermal storage, but the benefits from taking advantage of shifting electrical demand (of water heating) to space heating demand can outweigh the loss of performance.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleHeat Pump Water Heater Control Strategy Optimization for Cold Climates
    typeJournal Paper
    journal volume138
    journal issue1
    journal titleJournal of Solar Energy Engineering
    identifier doi10.1115/1.4032144
    journal fristpage11011
    journal lastpage11011
    identifier eissn1528-8986
    treeJournal of Solar Energy Engineering:;2016:;volume( 138 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian