A Screening Method for Prevention of Ratcheting Strain Derived From Movement of Temperature DistributionSource: Journal of Pressure Vessel Technology:;2016:;volume( 138 ):;issue: 005::page 51204DOI: 10.1115/1.4032989Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: In this paper, we simplify the existing method and propose a screening method to prevent thermal ratcheting strain in the design of practical components. The proposed method consists of two steps to prevent the continuous accumulation of ratcheting strain. The first step is to determine whether all points through the wall thickness are in the plastic state. This is based on an equivalent membrane stress, which comprises the primary stress and the secondary membrane stress. When the equivalent stress exceeds the yield strength in some regions of the cylinder, the axial lengths of these regions are measured for the second step. The second step is to determine whether the accumulation of the plastic strain saturates. For this purpose, we define the screening criteria for the length of the area with full section yield state. When this length is sufficiently small, residual stress is generated in the direction opposite to the plastic deformation direction. As a result of residual stress, further accumulation of the plastic deformation is suppressed, and finally shakedown occurs. To validate the proposed method, we performed a set of elastoplastic finite element method (FEM) analyses, with the assumption of elastic perfectly plastic material. Not only did we investigate about the effect of the axial length of the area with full section yield state but also we investigated about effects of spatial distribution of temperature, existence of primary stress, and radius thickness ratio.
|
Collections
Show full item record
contributor author | Okajima, Satoshi | |
contributor author | Wakai, Takashi | |
contributor author | Ando, Masanori | |
contributor author | Inoue, Yasuhiro | |
contributor author | Watanabe, Sota | |
date accessioned | 2017-05-09T01:32:52Z | |
date available | 2017-05-09T01:32:52Z | |
date issued | 2016 | |
identifier issn | 0094-9930 | |
identifier other | pvt_138_05_051204.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/162399 | |
description abstract | In this paper, we simplify the existing method and propose a screening method to prevent thermal ratcheting strain in the design of practical components. The proposed method consists of two steps to prevent the continuous accumulation of ratcheting strain. The first step is to determine whether all points through the wall thickness are in the plastic state. This is based on an equivalent membrane stress, which comprises the primary stress and the secondary membrane stress. When the equivalent stress exceeds the yield strength in some regions of the cylinder, the axial lengths of these regions are measured for the second step. The second step is to determine whether the accumulation of the plastic strain saturates. For this purpose, we define the screening criteria for the length of the area with full section yield state. When this length is sufficiently small, residual stress is generated in the direction opposite to the plastic deformation direction. As a result of residual stress, further accumulation of the plastic deformation is suppressed, and finally shakedown occurs. To validate the proposed method, we performed a set of elastoplastic finite element method (FEM) analyses, with the assumption of elastic perfectly plastic material. Not only did we investigate about the effect of the axial length of the area with full section yield state but also we investigated about effects of spatial distribution of temperature, existence of primary stress, and radius thickness ratio. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | A Screening Method for Prevention of Ratcheting Strain Derived From Movement of Temperature Distribution | |
type | Journal Paper | |
journal volume | 138 | |
journal issue | 5 | |
journal title | Journal of Pressure Vessel Technology | |
identifier doi | 10.1115/1.4032989 | |
journal fristpage | 51204 | |
journal lastpage | 51204 | |
identifier eissn | 1528-8978 | |
tree | Journal of Pressure Vessel Technology:;2016:;volume( 138 ):;issue: 005 | |
contenttype | Fulltext |