Show simple item record

contributor authorOkajima, Satoshi
contributor authorWakai, Takashi
contributor authorAndo, Masanori
contributor authorInoue, Yasuhiro
contributor authorWatanabe, Sota
date accessioned2017-05-09T01:32:52Z
date available2017-05-09T01:32:52Z
date issued2016
identifier issn0094-9930
identifier otherpvt_138_05_051204.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/162399
description abstractIn this paper, we simplify the existing method and propose a screening method to prevent thermal ratcheting strain in the design of practical components. The proposed method consists of two steps to prevent the continuous accumulation of ratcheting strain. The first step is to determine whether all points through the wall thickness are in the plastic state. This is based on an equivalent membrane stress, which comprises the primary stress and the secondary membrane stress. When the equivalent stress exceeds the yield strength in some regions of the cylinder, the axial lengths of these regions are measured for the second step. The second step is to determine whether the accumulation of the plastic strain saturates. For this purpose, we define the screening criteria for the length of the area with full section yield state. When this length is sufficiently small, residual stress is generated in the direction opposite to the plastic deformation direction. As a result of residual stress, further accumulation of the plastic deformation is suppressed, and finally shakedown occurs. To validate the proposed method, we performed a set of elastoplastic finite element method (FEM) analyses, with the assumption of elastic perfectly plastic material. Not only did we investigate about the effect of the axial length of the area with full section yield state but also we investigated about effects of spatial distribution of temperature, existence of primary stress, and radius thickness ratio.
publisherThe American Society of Mechanical Engineers (ASME)
titleA Screening Method for Prevention of Ratcheting Strain Derived From Movement of Temperature Distribution
typeJournal Paper
journal volume138
journal issue5
journal titleJournal of Pressure Vessel Technology
identifier doi10.1115/1.4032989
journal fristpage51204
journal lastpage51204
identifier eissn1528-8978
treeJournal of Pressure Vessel Technology:;2016:;volume( 138 ):;issue: 005
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record