contributor author | Guo, Jie | |
contributor author | Cao, Yipeng | |
contributor author | Zhang, Wenping | |
contributor author | Zhang, Xinyu | |
date accessioned | 2017-05-09T01:28:56Z | |
date available | 2017-05-09T01:28:56Z | |
date issued | 2016 | |
identifier issn | 1528-8919 | |
identifier other | gtp_138_09_092806.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/161210 | |
description abstract | The engine vibration and noise induced by a valve train element are analyzed through the modeling and experiment method. The valve train dynamics are first studied to make clear the sources of the valve train noise. The component flexibility and inertia of mass are all taken into consideration as well as the contact or impact behaviors. The contact or impact forces are applied on the combined model of a combined structure. The resulting vibration responses at the outer surfaces are considered to be the boundary conditions of the acoustic model. The acoustic model is built by the boundary element method. The analysis results show that the noise induced by the valve train element is mainly in the 500–800 Hz 1/3 octave bands. The noise in this frequency range is related to not only the resonance of oil pan and valve cover but also the overall combined structure stiffness. And moreover, the resonance of the valve train element excited by the harmonic of the camshaft rotational frequency has heightened the noise radiation in this frequency range. The noise in the lowfrequency range is determined by the exciting components of the cam profile, and that in the highfrequency range are produced mainly by the valve–seat impact and by the cam–tappet impact. The analysis results are proved well by comparison with the experimental results. Thus, the results are very useful for understanding the source characteristics of valve train noise. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Analysis of Engine Vibration and Noise Induced by a Valve Train Element Combined With the Dynamic Behaviors | |
type | Journal Paper | |
journal volume | 138 | |
journal issue | 9 | |
journal title | Journal of Engineering for Gas Turbines and Power | |
identifier doi | 10.1115/1.4032715 | |
journal fristpage | 92806 | |
journal lastpage | 92806 | |
identifier eissn | 0742-4795 | |
tree | Journal of Engineering for Gas Turbines and Power:;2016:;volume( 138 ):;issue: 009 | |
contenttype | Fulltext | |