YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    NOx Behavior for Lean Premixed Combustion of Alternative Gaseous Fuels

    Source: Journal of Engineering for Gas Turbines and Power:;2016:;volume( 138 ):;issue: 004::page 41504
    Author:
    Boyd Fackler, K.
    ,
    Karalus, Megan
    ,
    Novosselov, Igor
    ,
    Kramlich, John
    ,
    Malte, Philip
    ,
    Vijlee, Shazib
    DOI: 10.1115/1.4031478
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Gaseous fuels other than pipeline natural gas are of interest in highintensity premixed combustors (e.g., leanpremixed gas turbine combustors) as a means of broadening the range of potential fuel resources and increasing the utilization of alternative fuel gases. An area of key interest is the change in emissions that accompanies the replacement of a fuel. The work reported here is an experimental and modeling effort aimed at determining the changes in NOx emission that accompany the use of alternative fuels. Controlling oxides of nitrogen (NOx) from combustion sources is essential in nonattainment areas. Leanpremixed combustion eliminates most of the thermal NOx emission but is still subject to small, although significant amounts of NOx formed by the complexities of free radical chemistry in the turbulent flames of most combustion systems. Understanding these small amounts of NOx, and how their formation is altered by fuel composition, is the objective of this paper. We explore how NOx is formed in highintensity, leanpremixed flames of alternative gaseous fuels. This is based on laboratory experiments and interpretation by chemical reactor modeling. Methane is used as the reference fuel. Combustion temperature is maintained the same for all fuels so that the effect of fuel composition on NOx can be studied without the complicating influence of changing temperature. Also the combustion reactor residence time is maintained nearly constant. When methane containing nitrogen and carbon dioxide (e.g., landfill gas) is burned, NOx increases because the fuel/air ratio is enriched to maintain combustion temperature. When fuels of increasing C/H ratio are burned leading to higher levels of carbon monoxide (CO) in the flame, or when the fuel contains CO, the free radicals made as the CO oxidizes cause the NOx to increase. In these cases, the change from highmethane natural gas to alternative gaseous fuel causes the NOx to increase. However, when hydrogen is added to the methane, the NOx may increase or decrease, depending on the combustor wall heat loss. In our work, in which combustor wall heat loss is present, hydrogen addition deceases the NOx. This observation is compared to the literature. Additionally, minimum NOx emission is examined by comparing the present results to the findings of Leonard and Stegmaier.
    • Download: (2.087Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      NOx Behavior for Lean Premixed Combustion of Alternative Gaseous Fuels

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/161058
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorBoyd Fackler, K.
    contributor authorKaralus, Megan
    contributor authorNovosselov, Igor
    contributor authorKramlich, John
    contributor authorMalte, Philip
    contributor authorVijlee, Shazib
    date accessioned2017-05-09T01:28:21Z
    date available2017-05-09T01:28:21Z
    date issued2016
    identifier issn1528-8919
    identifier othergtp_138_04_041504.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/161058
    description abstractGaseous fuels other than pipeline natural gas are of interest in highintensity premixed combustors (e.g., leanpremixed gas turbine combustors) as a means of broadening the range of potential fuel resources and increasing the utilization of alternative fuel gases. An area of key interest is the change in emissions that accompanies the replacement of a fuel. The work reported here is an experimental and modeling effort aimed at determining the changes in NOx emission that accompany the use of alternative fuels. Controlling oxides of nitrogen (NOx) from combustion sources is essential in nonattainment areas. Leanpremixed combustion eliminates most of the thermal NOx emission but is still subject to small, although significant amounts of NOx formed by the complexities of free radical chemistry in the turbulent flames of most combustion systems. Understanding these small amounts of NOx, and how their formation is altered by fuel composition, is the objective of this paper. We explore how NOx is formed in highintensity, leanpremixed flames of alternative gaseous fuels. This is based on laboratory experiments and interpretation by chemical reactor modeling. Methane is used as the reference fuel. Combustion temperature is maintained the same for all fuels so that the effect of fuel composition on NOx can be studied without the complicating influence of changing temperature. Also the combustion reactor residence time is maintained nearly constant. When methane containing nitrogen and carbon dioxide (e.g., landfill gas) is burned, NOx increases because the fuel/air ratio is enriched to maintain combustion temperature. When fuels of increasing C/H ratio are burned leading to higher levels of carbon monoxide (CO) in the flame, or when the fuel contains CO, the free radicals made as the CO oxidizes cause the NOx to increase. In these cases, the change from highmethane natural gas to alternative gaseous fuel causes the NOx to increase. However, when hydrogen is added to the methane, the NOx may increase or decrease, depending on the combustor wall heat loss. In our work, in which combustor wall heat loss is present, hydrogen addition deceases the NOx. This observation is compared to the literature. Additionally, minimum NOx emission is examined by comparing the present results to the findings of Leonard and Stegmaier.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleNOx Behavior for Lean Premixed Combustion of Alternative Gaseous Fuels
    typeJournal Paper
    journal volume138
    journal issue4
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4031478
    journal fristpage41504
    journal lastpage41504
    identifier eissn0742-4795
    treeJournal of Engineering for Gas Turbines and Power:;2016:;volume( 138 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian