YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    First and Second Law Analysis of Intercooled Turbofan Engine

    Source: Journal of Engineering for Gas Turbines and Power:;2016:;volume( 138 ):;issue: 002::page 21202
    Author:
    Zhao, Xin
    ,
    Thulin, Oskar
    ,
    Grأ¶nstedt, Tomas
    DOI: 10.1115/1.4031316
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Although the benefits of intercooling for aeroengine applications have been realized and discussed in many publications, quantitative details are still relatively limited. In order to strengthen the understanding of aeroengine intercooling, detailed performance data on optimized intercooled (IC) turbofan engines are provided. Analysis is conducted using an exergy breakdown, i.e., quantifying the losses into a common currency by applying a combined use of the first and second law of thermodynamics. Optimal IC geared turbofan engines for a long range mission are established with computational fluid dynamics (CFD) based twopass cross flow tubular intercooler correlations. By means of a separate variable nozzle, the amount of intercooler coolant air can be optimized to different flight conditions. Exergy analysis is used to assess how irreversibility is varying over the flight mission, allowing for a more clear explanation and interpretation of the benefits. The optimal IC geared turbofan engine provides a 4.5% fuel burn benefit over a nonIC geared reference engine. The optimum is constrained by the last stage compressor blade height. To further explore the potential of intercooling the constraint limiting the axial compressor last stage blade height is relaxed by introducing an axial radial high pressure compressor (HPC). The axial–radial high pressure ratio (PR) configuration allows for an ultrahigh overall PR (OPR). With an optimal topofclimb (TOC) OPR of 140, the configuration provides a 5.3% fuel burn benefit over the geared reference engine. The irreversibilities of the intercooler are broken down into its components to analyze the difference between the ultrahigh OPR axial–radial configuration and the purely axial configuration. An intercooler conceptual design method is used to predict pressure loss heat transfer and weight for the different OPRs. Exergy analysis combined with results from the intercooler and engine conceptual design are used to support the conclusion that the optimal PR split exponent stays relatively independent of the overall engine PR.
    • Download: (897.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      First and Second Law Analysis of Intercooled Turbofan Engine

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/161010
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorZhao, Xin
    contributor authorThulin, Oskar
    contributor authorGrأ¶nstedt, Tomas
    date accessioned2017-05-09T01:28:07Z
    date available2017-05-09T01:28:07Z
    date issued2016
    identifier issn1528-8919
    identifier othergtp_138_02_021202.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/161010
    description abstractAlthough the benefits of intercooling for aeroengine applications have been realized and discussed in many publications, quantitative details are still relatively limited. In order to strengthen the understanding of aeroengine intercooling, detailed performance data on optimized intercooled (IC) turbofan engines are provided. Analysis is conducted using an exergy breakdown, i.e., quantifying the losses into a common currency by applying a combined use of the first and second law of thermodynamics. Optimal IC geared turbofan engines for a long range mission are established with computational fluid dynamics (CFD) based twopass cross flow tubular intercooler correlations. By means of a separate variable nozzle, the amount of intercooler coolant air can be optimized to different flight conditions. Exergy analysis is used to assess how irreversibility is varying over the flight mission, allowing for a more clear explanation and interpretation of the benefits. The optimal IC geared turbofan engine provides a 4.5% fuel burn benefit over a nonIC geared reference engine. The optimum is constrained by the last stage compressor blade height. To further explore the potential of intercooling the constraint limiting the axial compressor last stage blade height is relaxed by introducing an axial radial high pressure compressor (HPC). The axial–radial high pressure ratio (PR) configuration allows for an ultrahigh overall PR (OPR). With an optimal topofclimb (TOC) OPR of 140, the configuration provides a 5.3% fuel burn benefit over the geared reference engine. The irreversibilities of the intercooler are broken down into its components to analyze the difference between the ultrahigh OPR axial–radial configuration and the purely axial configuration. An intercooler conceptual design method is used to predict pressure loss heat transfer and weight for the different OPRs. Exergy analysis combined with results from the intercooler and engine conceptual design are used to support the conclusion that the optimal PR split exponent stays relatively independent of the overall engine PR.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleFirst and Second Law Analysis of Intercooled Turbofan Engine
    typeJournal Paper
    journal volume138
    journal issue2
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4031316
    journal fristpage21202
    journal lastpage21202
    identifier eissn0742-4795
    treeJournal of Engineering for Gas Turbines and Power:;2016:;volume( 138 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian