Adiabatic Effectiveness and Flow Field Measurements in a Realistic Effusion Cooled Lean Burn CombustorSource: Journal of Engineering for Gas Turbines and Power:;2016:;volume( 138 ):;issue: 003::page 31506Author:Andreini, Antonio
,
Becchi, Riccardo
,
Facchini, Bruno
,
Mazzei, Lorenzo
,
Picchi, Alessio
,
Turrini, Fabio
DOI: 10.1115/1.4031309Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: Over the last ten years, there have been significant technological advances toward the reduction of NOx emissions from civil aircraft engines, strongly aimed at meeting stricter and stricter legislation requirements. Nowadays, the most prominent way to meet the target of reducing NOx emissions in modern combustors is represented by lean burn swirl stabilized technology. The high amount of air admitted through a lean burn injection system is characterized by very complex flow structures such as recirculations, vortex breakdown, and precessing vortex core (PVC) that may deeply interact in the near wall region of the combustor liner. This interaction makes challenging the estimation of film cooling distribution, commonly generated by slot and effusion systems. The main purpose of the present work is the characterization of the flow field and the adiabatic effectiveness due to the interaction of swirling flow, generated by real geometry injectors, and a liner cooling scheme made up of a slot injection and an effusion array. The experimental apparatus has been developed within EU project LEMCOTEC (low emissions coreengine technologies) and consists of a nonreactive threesectors planar rig; the test model is characterized by a complete cooling system and three swirlers, replicating the geometry of a GE Avio PERM (partially evaporated and rapid mixing) injector technology. Flow field measurements have been performed by means of a standard 2D PIV (particle image velocimetry) technique, while adiabatic effectiveness maps have been obtained using PSP (pressure sensitive paint) technique. PIV results show the effect of coolant injection in the corner vortex region, while the PSP measurements highlight the impact of swirled flow on the liner film protection separating the contribution of slot and effusion flows. Furthermore, an additional analysis, exploiting experimental results in terms of heat transfer coefficient, has been performed to estimate the net heat flux reduction (NHFR) on the cooled test plate.
|
Show full item record
contributor author | Andreini, Antonio | |
contributor author | Becchi, Riccardo | |
contributor author | Facchini, Bruno | |
contributor author | Mazzei, Lorenzo | |
contributor author | Picchi, Alessio | |
contributor author | Turrini, Fabio | |
date accessioned | 2017-05-09T01:28:07Z | |
date available | 2017-05-09T01:28:07Z | |
date issued | 2016 | |
identifier issn | 1528-8919 | |
identifier other | gtp_138_03_031506.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/161007 | |
description abstract | Over the last ten years, there have been significant technological advances toward the reduction of NOx emissions from civil aircraft engines, strongly aimed at meeting stricter and stricter legislation requirements. Nowadays, the most prominent way to meet the target of reducing NOx emissions in modern combustors is represented by lean burn swirl stabilized technology. The high amount of air admitted through a lean burn injection system is characterized by very complex flow structures such as recirculations, vortex breakdown, and precessing vortex core (PVC) that may deeply interact in the near wall region of the combustor liner. This interaction makes challenging the estimation of film cooling distribution, commonly generated by slot and effusion systems. The main purpose of the present work is the characterization of the flow field and the adiabatic effectiveness due to the interaction of swirling flow, generated by real geometry injectors, and a liner cooling scheme made up of a slot injection and an effusion array. The experimental apparatus has been developed within EU project LEMCOTEC (low emissions coreengine technologies) and consists of a nonreactive threesectors planar rig; the test model is characterized by a complete cooling system and three swirlers, replicating the geometry of a GE Avio PERM (partially evaporated and rapid mixing) injector technology. Flow field measurements have been performed by means of a standard 2D PIV (particle image velocimetry) technique, while adiabatic effectiveness maps have been obtained using PSP (pressure sensitive paint) technique. PIV results show the effect of coolant injection in the corner vortex region, while the PSP measurements highlight the impact of swirled flow on the liner film protection separating the contribution of slot and effusion flows. Furthermore, an additional analysis, exploiting experimental results in terms of heat transfer coefficient, has been performed to estimate the net heat flux reduction (NHFR) on the cooled test plate. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Adiabatic Effectiveness and Flow Field Measurements in a Realistic Effusion Cooled Lean Burn Combustor | |
type | Journal Paper | |
journal volume | 138 | |
journal issue | 3 | |
journal title | Journal of Engineering for Gas Turbines and Power | |
identifier doi | 10.1115/1.4031309 | |
journal fristpage | 31506 | |
journal lastpage | 31506 | |
identifier eissn | 0742-4795 | |
tree | Journal of Engineering for Gas Turbines and Power:;2016:;volume( 138 ):;issue: 003 | |
contenttype | Fulltext |