Aeroelastic Instability in Transonic FansSource: Journal of Engineering for Gas Turbines and Power:;2016:;volume( 138 ):;issue: 002::page 22604DOI: 10.1115/1.4031225Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: This paper describes stall flutter, which can occur at part speed operating conditions near the stall boundary. Although it is called stall flutter, this phenomenon does not require the stalling of the fan blade in the sense that it can occur when the slope of the pressure rise characteristic is still negative. This type of flutter occurs with low nodal diameter forward traveling waves and it occurs for the first flap (1F) mode of blade vibration. For this paper, a computational fluid dynamics (CFD) code has been applied to a real fan of contemporary design; the code has been found to be reliable in predicting mean flow and aeroelastic behavior. When the mass flow is reduced, the flow becomes unstable, resulting in flutter or in stall (the stall perhaps leading to surge). When the relative tip speed into the fan rotor is close to sonic, it is found (by measurement and by computation) that the instability for the fan blade considered in this work results in flutter. The CFD has been used like an experimental technique, varying parameters to understand what controls the instability behavior. It is found that the flutter for this fan requires a separated region on the suction surface. It is also found that the acoustic pressure field associated with the blade vibration must be cuton upstream of the rotor and cutoff downstream of the rotor if flutter instability is to occur. The difference in cut off conditions upstream and downstream is largely produced by the mean swirl velocity introduced by the fan rotor in imparting work and pressure rise to the air. The conditions for instability therefore require a threedimensional geometric description and blades with finite mean loading. The third parameter that governs the flutter stability of the blade is the ratio of the twisting motion to the plunging motion of the 1F mode shape, which determines the ratio of leading edge (LE) displacement to the trailing edge (TE) displacement. It will be shown that as this ratio increases the onset of flutter moves to a lower mass flow.
|
Show full item record
| contributor author | Vahdati, Mehdi | |
| contributor author | Cumpsty, Nick | |
| date accessioned | 2017-05-09T01:28:01Z | |
| date available | 2017-05-09T01:28:01Z | |
| date issued | 2016 | |
| identifier issn | 1528-8919 | |
| identifier other | gtp_138_02_022604.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/160980 | |
| description abstract | This paper describes stall flutter, which can occur at part speed operating conditions near the stall boundary. Although it is called stall flutter, this phenomenon does not require the stalling of the fan blade in the sense that it can occur when the slope of the pressure rise characteristic is still negative. This type of flutter occurs with low nodal diameter forward traveling waves and it occurs for the first flap (1F) mode of blade vibration. For this paper, a computational fluid dynamics (CFD) code has been applied to a real fan of contemporary design; the code has been found to be reliable in predicting mean flow and aeroelastic behavior. When the mass flow is reduced, the flow becomes unstable, resulting in flutter or in stall (the stall perhaps leading to surge). When the relative tip speed into the fan rotor is close to sonic, it is found (by measurement and by computation) that the instability for the fan blade considered in this work results in flutter. The CFD has been used like an experimental technique, varying parameters to understand what controls the instability behavior. It is found that the flutter for this fan requires a separated region on the suction surface. It is also found that the acoustic pressure field associated with the blade vibration must be cuton upstream of the rotor and cutoff downstream of the rotor if flutter instability is to occur. The difference in cut off conditions upstream and downstream is largely produced by the mean swirl velocity introduced by the fan rotor in imparting work and pressure rise to the air. The conditions for instability therefore require a threedimensional geometric description and blades with finite mean loading. The third parameter that governs the flutter stability of the blade is the ratio of the twisting motion to the plunging motion of the 1F mode shape, which determines the ratio of leading edge (LE) displacement to the trailing edge (TE) displacement. It will be shown that as this ratio increases the onset of flutter moves to a lower mass flow. | |
| publisher | The American Society of Mechanical Engineers (ASME) | |
| title | Aeroelastic Instability in Transonic Fans | |
| type | Journal Paper | |
| journal volume | 138 | |
| journal issue | 2 | |
| journal title | Journal of Engineering for Gas Turbines and Power | |
| identifier doi | 10.1115/1.4031225 | |
| journal fristpage | 22604 | |
| journal lastpage | 22604 | |
| identifier eissn | 0742-4795 | |
| tree | Journal of Engineering for Gas Turbines and Power:;2016:;volume( 138 ):;issue: 002 | |
| contenttype | Fulltext |