YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Aeroelastic Instability in Transonic Fans

    Source: Journal of Engineering for Gas Turbines and Power:;2016:;volume( 138 ):;issue: 002::page 22604
    Author:
    Vahdati, Mehdi
    ,
    Cumpsty, Nick
    DOI: 10.1115/1.4031225
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper describes stall flutter, which can occur at part speed operating conditions near the stall boundary. Although it is called stall flutter, this phenomenon does not require the stalling of the fan blade in the sense that it can occur when the slope of the pressure rise characteristic is still negative. This type of flutter occurs with low nodal diameter forward traveling waves and it occurs for the first flap (1F) mode of blade vibration. For this paper, a computational fluid dynamics (CFD) code has been applied to a real fan of contemporary design; the code has been found to be reliable in predicting mean flow and aeroelastic behavior. When the mass flow is reduced, the flow becomes unstable, resulting in flutter or in stall (the stall perhaps leading to surge). When the relative tip speed into the fan rotor is close to sonic, it is found (by measurement and by computation) that the instability for the fan blade considered in this work results in flutter. The CFD has been used like an experimental technique, varying parameters to understand what controls the instability behavior. It is found that the flutter for this fan requires a separated region on the suction surface. It is also found that the acoustic pressure field associated with the blade vibration must be cuton upstream of the rotor and cutoff downstream of the rotor if flutter instability is to occur. The difference in cut off conditions upstream and downstream is largely produced by the mean swirl velocity introduced by the fan rotor in imparting work and pressure rise to the air. The conditions for instability therefore require a threedimensional geometric description and blades with finite mean loading. The third parameter that governs the flutter stability of the blade is the ratio of the twisting motion to the plunging motion of the 1F mode shape, which determines the ratio of leading edge (LE) displacement to the trailing edge (TE) displacement. It will be shown that as this ratio increases the onset of flutter moves to a lower mass flow.
    • Download: (3.962Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Aeroelastic Instability in Transonic Fans

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/160980
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorVahdati, Mehdi
    contributor authorCumpsty, Nick
    date accessioned2017-05-09T01:28:01Z
    date available2017-05-09T01:28:01Z
    date issued2016
    identifier issn1528-8919
    identifier othergtp_138_02_022604.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/160980
    description abstractThis paper describes stall flutter, which can occur at part speed operating conditions near the stall boundary. Although it is called stall flutter, this phenomenon does not require the stalling of the fan blade in the sense that it can occur when the slope of the pressure rise characteristic is still negative. This type of flutter occurs with low nodal diameter forward traveling waves and it occurs for the first flap (1F) mode of blade vibration. For this paper, a computational fluid dynamics (CFD) code has been applied to a real fan of contemporary design; the code has been found to be reliable in predicting mean flow and aeroelastic behavior. When the mass flow is reduced, the flow becomes unstable, resulting in flutter or in stall (the stall perhaps leading to surge). When the relative tip speed into the fan rotor is close to sonic, it is found (by measurement and by computation) that the instability for the fan blade considered in this work results in flutter. The CFD has been used like an experimental technique, varying parameters to understand what controls the instability behavior. It is found that the flutter for this fan requires a separated region on the suction surface. It is also found that the acoustic pressure field associated with the blade vibration must be cuton upstream of the rotor and cutoff downstream of the rotor if flutter instability is to occur. The difference in cut off conditions upstream and downstream is largely produced by the mean swirl velocity introduced by the fan rotor in imparting work and pressure rise to the air. The conditions for instability therefore require a threedimensional geometric description and blades with finite mean loading. The third parameter that governs the flutter stability of the blade is the ratio of the twisting motion to the plunging motion of the 1F mode shape, which determines the ratio of leading edge (LE) displacement to the trailing edge (TE) displacement. It will be shown that as this ratio increases the onset of flutter moves to a lower mass flow.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAeroelastic Instability in Transonic Fans
    typeJournal Paper
    journal volume138
    journal issue2
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4031225
    journal fristpage22604
    journal lastpage22604
    identifier eissn0742-4795
    treeJournal of Engineering for Gas Turbines and Power:;2016:;volume( 138 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian