YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Waste Heat Recovery in a Cruise Vessel in the Baltic Sea by Using an Organic Rankine Cycle: A Case Study

    Source: Journal of Engineering for Gas Turbines and Power:;2016:;volume( 138 ):;issue: 001::page 11702
    Author:
    Ahlgren, Fredrik
    ,
    Mondejar, Maria E.
    ,
    Genrup, Magnus
    ,
    Thern, Marcus
    DOI: 10.1115/1.4031145
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Maritime transportation is a significant contributor to SOx, NOx, and particle matter (PM) emissions, and to a lesser extent, of CO2. Recently, new regulations are being enforced in special geographical areas to limit the amount of emissions from the ships. This fact, together with the high fuel prices, is driving the marine industry toward the improvement of the energy efficiency of ships. Although more sophisticated and complex engine designs can improve significantly of the energy systems on ships, waste heat recovery arises as the most effective technique for the reduction of the energy consumption. In this sense, it is estimated that around 50% of the total energy from the fuel consumed in a ship is wasted and rejected through liquid and gas streams. The primary heat sources for waste heat recovery are the engine exhaust and coolant. In this work, we present a study on the integration of an organic Rankine cycle (ORC) in an existing ship, for the recovery of the main and auxiliary engines (AE) exhaust heat. Experimental data from the engines on the cruise ship M/S Birka Stockholm were logged during a porttoport cruise from Stockholm to Mariehamn, over a period of 4 weeks. The ship has four main engines (ME) Wأ¤rtsilأ¤ 5850 kW for propulsion, and four AE 2760 kW which are used for electrical generation. Six engine load conditions were identified depending on the ship's speed. The speed range from 12 to 14 kn was considered as the design condition for the ORC, as it was present during more than 34% of the time. In this study, the average values of the engines exhaust temperatures and mass flow rates, for each load case, were used as inputs for a model of an ORC. The main parameters of the ORC, including working fluid and turbine configuration, were optimized based on the criteria of maximum net power output and compactness of the installation components. Results from the study showed that an ORC with internal regeneration using benzene as working fluid would yield the greatest average net power output over the operating time. For this situation, the power production of the ORC would represent about 22% of the total electricity consumption on board. These data confirmed the ORC as a feasible and promising technology for the reduction of fuel consumption and CO2 emissions of existing ships.
    • Download: (1.182Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Waste Heat Recovery in a Cruise Vessel in the Baltic Sea by Using an Organic Rankine Cycle: A Case Study

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/160963
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorAhlgren, Fredrik
    contributor authorMondejar, Maria E.
    contributor authorGenrup, Magnus
    contributor authorThern, Marcus
    date accessioned2017-05-09T01:27:58Z
    date available2017-05-09T01:27:58Z
    date issued2016
    identifier issn1528-8919
    identifier othergtp_138_01_011702.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/160963
    description abstractMaritime transportation is a significant contributor to SOx, NOx, and particle matter (PM) emissions, and to a lesser extent, of CO2. Recently, new regulations are being enforced in special geographical areas to limit the amount of emissions from the ships. This fact, together with the high fuel prices, is driving the marine industry toward the improvement of the energy efficiency of ships. Although more sophisticated and complex engine designs can improve significantly of the energy systems on ships, waste heat recovery arises as the most effective technique for the reduction of the energy consumption. In this sense, it is estimated that around 50% of the total energy from the fuel consumed in a ship is wasted and rejected through liquid and gas streams. The primary heat sources for waste heat recovery are the engine exhaust and coolant. In this work, we present a study on the integration of an organic Rankine cycle (ORC) in an existing ship, for the recovery of the main and auxiliary engines (AE) exhaust heat. Experimental data from the engines on the cruise ship M/S Birka Stockholm were logged during a porttoport cruise from Stockholm to Mariehamn, over a period of 4 weeks. The ship has four main engines (ME) Wأ¤rtsilأ¤ 5850 kW for propulsion, and four AE 2760 kW which are used for electrical generation. Six engine load conditions were identified depending on the ship's speed. The speed range from 12 to 14 kn was considered as the design condition for the ORC, as it was present during more than 34% of the time. In this study, the average values of the engines exhaust temperatures and mass flow rates, for each load case, were used as inputs for a model of an ORC. The main parameters of the ORC, including working fluid and turbine configuration, were optimized based on the criteria of maximum net power output and compactness of the installation components. Results from the study showed that an ORC with internal regeneration using benzene as working fluid would yield the greatest average net power output over the operating time. For this situation, the power production of the ORC would represent about 22% of the total electricity consumption on board. These data confirmed the ORC as a feasible and promising technology for the reduction of fuel consumption and CO2 emissions of existing ships.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleWaste Heat Recovery in a Cruise Vessel in the Baltic Sea by Using an Organic Rankine Cycle: A Case Study
    typeJournal Paper
    journal volume138
    journal issue1
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4031145
    journal fristpage11702
    journal lastpage11702
    identifier eissn0742-4795
    treeJournal of Engineering for Gas Turbines and Power:;2016:;volume( 138 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian