YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Improvement in Solar Chimney Power Generation by Using a Diffuser Tower

    Source: Journal of Solar Energy Engineering:;2015:;volume( 137 ):;issue: 003::page 31009
    Author:
    Okada, Shinsuke
    ,
    Uchida, Takanori
    ,
    Karasudani, Takashi
    ,
    Ohya, Yuji
    DOI: 10.1115/1.4029377
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The solar chimney prototype, operated in Spain from 1982 to 1989, verified the concept of the solar chimney. The power generation mechanism in this system is to turn the wind turbine placed inside a high rise cylindrical hollow tower by an induced thermal updraft. As long as the thermal updraft is induced inside the tower by the solar radiation, this system can produce electricity. The disadvantage of this system is the low power generation efficiency compared to other solar energy power generation systems. To overcome this disadvantage, we improved the mechanism in order to augment the velocity of the air which flows into the wind turbine. By applying a diffuser tower instead of a cylindrical one, the efficiency of the systems power generation is increased. The mechanism that we investigated was the effect of the diffuser on the solar chimney structure. The inner diameter of the tower expands as the height increases so that the static pressure recovery effect of the diffuser causes a low static pressure region to form at the bottom of the tower. This effect induces greater airflow within the tower. The laboratory experiment, as does the computational fluid dynamics (CFD) analysis of the laboratory sized model, shows that the proposed diffuser type tower induces a velocity approximately 1.38–1.44 times greater than the conventional cylindrical type. The wind power generation output is proportional to the cube of the incoming wind velocity into the wind turbine; therefore, approximately 2.6–3.0 times greater power output can be expected from using the diffuser type tower.
    • Download: (2.044Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Improvement in Solar Chimney Power Generation by Using a Diffuser Tower

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/159605
    Collections
    • Journal of Solar Energy Engineering

    Show full item record

    contributor authorOkada, Shinsuke
    contributor authorUchida, Takanori
    contributor authorKarasudani, Takashi
    contributor authorOhya, Yuji
    date accessioned2017-05-09T01:23:28Z
    date available2017-05-09T01:23:28Z
    date issued2015
    identifier issn0199-6231
    identifier othersol_137_03_031009.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/159605
    description abstractThe solar chimney prototype, operated in Spain from 1982 to 1989, verified the concept of the solar chimney. The power generation mechanism in this system is to turn the wind turbine placed inside a high rise cylindrical hollow tower by an induced thermal updraft. As long as the thermal updraft is induced inside the tower by the solar radiation, this system can produce electricity. The disadvantage of this system is the low power generation efficiency compared to other solar energy power generation systems. To overcome this disadvantage, we improved the mechanism in order to augment the velocity of the air which flows into the wind turbine. By applying a diffuser tower instead of a cylindrical one, the efficiency of the systems power generation is increased. The mechanism that we investigated was the effect of the diffuser on the solar chimney structure. The inner diameter of the tower expands as the height increases so that the static pressure recovery effect of the diffuser causes a low static pressure region to form at the bottom of the tower. This effect induces greater airflow within the tower. The laboratory experiment, as does the computational fluid dynamics (CFD) analysis of the laboratory sized model, shows that the proposed diffuser type tower induces a velocity approximately 1.38–1.44 times greater than the conventional cylindrical type. The wind power generation output is proportional to the cube of the incoming wind velocity into the wind turbine; therefore, approximately 2.6–3.0 times greater power output can be expected from using the diffuser type tower.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleImprovement in Solar Chimney Power Generation by Using a Diffuser Tower
    typeJournal Paper
    journal volume137
    journal issue3
    journal titleJournal of Solar Energy Engineering
    identifier doi10.1115/1.4029377
    journal fristpage31009
    journal lastpage31009
    identifier eissn1528-8986
    treeJournal of Solar Energy Engineering:;2015:;volume( 137 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian