YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Compensation of Gravity Induced Heliostat Deflections for Improved Optical Performance

    Source: Journal of Solar Energy Engineering:;2015:;volume( 137 ):;issue: 002::page 21016
    Author:
    Yuan, James K.
    ,
    Christian, Joshua M.
    ,
    Ho, Clifford K.
    DOI: 10.1115/1.4028938
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Heliostat optical performance can be affected by both wind and gravity induced deflections in the mirror support structure. These effects can result in decreased energy collection efficiency, depending on the magnitude of structural deflections, heliostat orientation and field position, and sun position. This paper presents a coupled modeling approach to evaluate the effects of gravity loading on heliostat optical performance, considering two heliostat designs: The National Solar Thermal Test Facility (NSTTF) heliostat and the Advanced Thermal Systems (ATS) heliostat. Deflections under gravitational loading were determined using finite element analysis (FEA) in Ansys Mechanical, and the resulting deformed heliostat geometry was analyzed using Breault Apex optical engineering software to evaluate changes in beam size and shape. Optical results were validated against images of actual beams produced by each respective heliostat, measured using the Beam Characterization System (BCS) at Sandia National Laboratories. Simulated structural deflections in both heliostats were found to have visible impacts on beam shape, with small but quantifiable changes in beam power distribution. In this paper, the combined FEA and optical analysis method is described and validated, as well as a method for modeling heliostats subjected to gravitational deflection and canted infield, for which mirror positions may not be known rigorously. Furthermore, a modified, generalized construction method is proposed and analyzed for the ATS heliostat, which was found to give consistent improvements in beam shape and up to a 4.1% increase in annual incident power weighted intercept (AIPWI).
    • Download: (2.734Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Compensation of Gravity Induced Heliostat Deflections for Improved Optical Performance

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/159587
    Collections
    • Journal of Solar Energy Engineering

    Show full item record

    contributor authorYuan, James K.
    contributor authorChristian, Joshua M.
    contributor authorHo, Clifford K.
    date accessioned2017-05-09T01:23:25Z
    date available2017-05-09T01:23:25Z
    date issued2015
    identifier issn0199-6231
    identifier othersol_137_02_021016.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/159587
    description abstractHeliostat optical performance can be affected by both wind and gravity induced deflections in the mirror support structure. These effects can result in decreased energy collection efficiency, depending on the magnitude of structural deflections, heliostat orientation and field position, and sun position. This paper presents a coupled modeling approach to evaluate the effects of gravity loading on heliostat optical performance, considering two heliostat designs: The National Solar Thermal Test Facility (NSTTF) heliostat and the Advanced Thermal Systems (ATS) heliostat. Deflections under gravitational loading were determined using finite element analysis (FEA) in Ansys Mechanical, and the resulting deformed heliostat geometry was analyzed using Breault Apex optical engineering software to evaluate changes in beam size and shape. Optical results were validated against images of actual beams produced by each respective heliostat, measured using the Beam Characterization System (BCS) at Sandia National Laboratories. Simulated structural deflections in both heliostats were found to have visible impacts on beam shape, with small but quantifiable changes in beam power distribution. In this paper, the combined FEA and optical analysis method is described and validated, as well as a method for modeling heliostats subjected to gravitational deflection and canted infield, for which mirror positions may not be known rigorously. Furthermore, a modified, generalized construction method is proposed and analyzed for the ATS heliostat, which was found to give consistent improvements in beam shape and up to a 4.1% increase in annual incident power weighted intercept (AIPWI).
    publisherThe American Society of Mechanical Engineers (ASME)
    titleCompensation of Gravity Induced Heliostat Deflections for Improved Optical Performance
    typeJournal Paper
    journal volume137
    journal issue2
    journal titleJournal of Solar Energy Engineering
    identifier doi10.1115/1.4028938
    journal fristpage21016
    journal lastpage21016
    identifier eissn1528-8986
    treeJournal of Solar Energy Engineering:;2015:;volume( 137 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian