YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Thermodynamic and Cost Analysis of Solar Syngas From the Zn/ZnO Cycle

    Source: Journal of Solar Energy Engineering:;2015:;volume( 137 ):;issue: 001::page 11012
    Author:
    Nicodemus, Julia Haltiwanger
    ,
    McGuinness, Morgan
    ,
    Maharjan, Rijan
    DOI: 10.1115/1.4028189
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: We present a thermodynamic and cost analysis of synthesis gas (syngas) production by the Zn/ZnO solar thermochemical fuel production cycle. A mass, energy, and entropy balance over each step of the Zn/ZnO syngas production cycle is presented. The production of CO and H2 is considered simultaneously across the range of possible stoichiometric combinations, and the effects of irreversibilities due to both recombination in the quenching process following dissociation of ZnO and incomplete conversion in the fuel production step are explored. In the cost analysis, continuous functions for each cost component are presented, allowing estimated costs of syngas fuel produced at plants between 50 and 500 MWth. For a solar concentration ratio of 10,000, a dissociation temperature of 2300 K, and a CO fraction in the syngas of 1/3, the maximum cycle efficiency is 39% for an ideal case in which there is no recombination in the quencher, complete conversion in the oxidizer, and maximum heat recovery. In a 100 MWth plant, the cost to produce syngas would be $0.025/MJ for this ideal case. The effect of heat recuperation, recombination in the quencher, and incomplete conversion on efficiency and cost are explored. The effects of plant size and feedstock costs on the cost of solar syngas are also explored. The results underscore the importance improving quencher and oxidizer processes to reduce costs. However, even assuming the ideal case, the predicted cost of solar syngas is 5.5 times more expensive than natural gas on an energy basis. The process will therefore require incentive policies that support early implementation in order to become economically competitive.
    • Download: (518.4Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Thermodynamic and Cost Analysis of Solar Syngas From the Zn/ZnO Cycle

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/159561
    Collections
    • Journal of Solar Energy Engineering

    Show full item record

    contributor authorNicodemus, Julia Haltiwanger
    contributor authorMcGuinness, Morgan
    contributor authorMaharjan, Rijan
    date accessioned2017-05-09T01:23:21Z
    date available2017-05-09T01:23:21Z
    date issued2015
    identifier issn0199-6231
    identifier othersol_137_01_011012.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/159561
    description abstractWe present a thermodynamic and cost analysis of synthesis gas (syngas) production by the Zn/ZnO solar thermochemical fuel production cycle. A mass, energy, and entropy balance over each step of the Zn/ZnO syngas production cycle is presented. The production of CO and H2 is considered simultaneously across the range of possible stoichiometric combinations, and the effects of irreversibilities due to both recombination in the quenching process following dissociation of ZnO and incomplete conversion in the fuel production step are explored. In the cost analysis, continuous functions for each cost component are presented, allowing estimated costs of syngas fuel produced at plants between 50 and 500 MWth. For a solar concentration ratio of 10,000, a dissociation temperature of 2300 K, and a CO fraction in the syngas of 1/3, the maximum cycle efficiency is 39% for an ideal case in which there is no recombination in the quencher, complete conversion in the oxidizer, and maximum heat recovery. In a 100 MWth plant, the cost to produce syngas would be $0.025/MJ for this ideal case. The effect of heat recuperation, recombination in the quencher, and incomplete conversion on efficiency and cost are explored. The effects of plant size and feedstock costs on the cost of solar syngas are also explored. The results underscore the importance improving quencher and oxidizer processes to reduce costs. However, even assuming the ideal case, the predicted cost of solar syngas is 5.5 times more expensive than natural gas on an energy basis. The process will therefore require incentive policies that support early implementation in order to become economically competitive.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Thermodynamic and Cost Analysis of Solar Syngas From the Zn/ZnO Cycle
    typeJournal Paper
    journal volume137
    journal issue1
    journal titleJournal of Solar Energy Engineering
    identifier doi10.1115/1.4028189
    journal fristpage11012
    journal lastpage11012
    identifier eissn1528-8986
    treeJournal of Solar Energy Engineering:;2015:;volume( 137 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian