YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Bauschinger Effect's Influence on the Stress Intensity Factors of a Semi Elliptical Crack Emanating From an Erosion at the Bore of a Fully Autofrettaged Pressurized Cylinder

    Source: Journal of Pressure Vessel Technology:;2015:;volume( 137 ):;issue: 004::page 41403
    Author:
    Ma, Q.
    ,
    Levy, C.
    ,
    Perl, M.
    DOI: 10.1115/1.4029018
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The benefits of autofrettage for thickwalled cylindrical vessels as a means of improving the vessel's durability and sustainability have been addressed in the published literature. However, the presence of the Bauschinger effect (BE) complicates the overall effect of autofrettage, especially when complex threedimensional crack geometries emanating from erosions at the cylinder bore are considered. In this paper, the BE's impact on the stress intensity factors (SIFs) on such cracks is investigated. The effect of various erosion geometrical configurations on the mode I SIF distribution along the front of a semielliptical crack, emanating from the deepest line of the erosion surface (DLES) at the bore of an autofrettaged, pressurized thickwalled cylinder of outertoinner radius ratio, Ro/Ri = 2, is investigated. Both autofrettage with BE (BEDA) and Hill's ideal autofrettage residual stress field (BEIA) are considered and simulated by an equivalent thermal load. The SIFs are determined for the semielliptical cracks of various crack depths to wall thickness ratio, a/t = 0.05–0.25, and ellipticities, a/c, ranging from 0.5 to 1.5, emanating from the DLES via Ansys software and the nodal displacement method. Three groups of erosion geometries are considered: (a) arc erosions of constant relative depth, d/t, equal to 5% and with relative radii of curvature, r′/t, between 5% and 30%; (b) semielliptic erosions of constant relative depth, d/t, of 5% with erosion ellipticity, d/h, varying from 0.3 to 2.0; and (c) semicircular erosions of relative depth, d/t, between 1% and 10% of the wall thickness. KIP, the SIF due to pressurization, is highly dependent on the stress concentration ahead of the DLES which directly relates to the erosion geometry. It is found that the absolute value of KIA, the SIF due to autofrettage, is just slightly reduced by the presence of the erosion. Its change solely depends on, and is directly proportional to, the erosion depth. Thus, the combined SIFs of deep cracks are found to be significantly enhanced by the presence of autofrettage and might result in a shortening of the vessel's fatigue life by up to an order of magnitude. Counteracting this, the combined SIFs are found to be significantly higher for BEDA cases than for BEIA cases. Therefore, the vessel's fatigue life can be profoundly influenced by the presence of the BE.
    • Download: (1.029Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Bauschinger Effect's Influence on the Stress Intensity Factors of a Semi Elliptical Crack Emanating From an Erosion at the Bore of a Fully Autofrettaged Pressurized Cylinder

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/159492
    Collections
    • Journal of Pressure Vessel Technology

    Show full item record

    contributor authorMa, Q.
    contributor authorLevy, C.
    contributor authorPerl, M.
    date accessioned2017-05-09T01:23:07Z
    date available2017-05-09T01:23:07Z
    date issued2015
    identifier issn0094-9930
    identifier otherpvt_137_04_041403.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/159492
    description abstractThe benefits of autofrettage for thickwalled cylindrical vessels as a means of improving the vessel's durability and sustainability have been addressed in the published literature. However, the presence of the Bauschinger effect (BE) complicates the overall effect of autofrettage, especially when complex threedimensional crack geometries emanating from erosions at the cylinder bore are considered. In this paper, the BE's impact on the stress intensity factors (SIFs) on such cracks is investigated. The effect of various erosion geometrical configurations on the mode I SIF distribution along the front of a semielliptical crack, emanating from the deepest line of the erosion surface (DLES) at the bore of an autofrettaged, pressurized thickwalled cylinder of outertoinner radius ratio, Ro/Ri = 2, is investigated. Both autofrettage with BE (BEDA) and Hill's ideal autofrettage residual stress field (BEIA) are considered and simulated by an equivalent thermal load. The SIFs are determined for the semielliptical cracks of various crack depths to wall thickness ratio, a/t = 0.05–0.25, and ellipticities, a/c, ranging from 0.5 to 1.5, emanating from the DLES via Ansys software and the nodal displacement method. Three groups of erosion geometries are considered: (a) arc erosions of constant relative depth, d/t, equal to 5% and with relative radii of curvature, r′/t, between 5% and 30%; (b) semielliptic erosions of constant relative depth, d/t, of 5% with erosion ellipticity, d/h, varying from 0.3 to 2.0; and (c) semicircular erosions of relative depth, d/t, between 1% and 10% of the wall thickness. KIP, the SIF due to pressurization, is highly dependent on the stress concentration ahead of the DLES which directly relates to the erosion geometry. It is found that the absolute value of KIA, the SIF due to autofrettage, is just slightly reduced by the presence of the erosion. Its change solely depends on, and is directly proportional to, the erosion depth. Thus, the combined SIFs of deep cracks are found to be significantly enhanced by the presence of autofrettage and might result in a shortening of the vessel's fatigue life by up to an order of magnitude. Counteracting this, the combined SIFs are found to be significantly higher for BEDA cases than for BEIA cases. Therefore, the vessel's fatigue life can be profoundly influenced by the presence of the BE.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThe Bauschinger Effect's Influence on the Stress Intensity Factors of a Semi Elliptical Crack Emanating From an Erosion at the Bore of a Fully Autofrettaged Pressurized Cylinder
    typeJournal Paper
    journal volume137
    journal issue4
    journal titleJournal of Pressure Vessel Technology
    identifier doi10.1115/1.4029018
    journal fristpage41403
    journal lastpage41403
    identifier eissn1528-8978
    treeJournal of Pressure Vessel Technology:;2015:;volume( 137 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian