Show simple item record

contributor authorMa, Q.
contributor authorLevy, C.
contributor authorPerl, M.
date accessioned2017-05-09T01:23:07Z
date available2017-05-09T01:23:07Z
date issued2015
identifier issn0094-9930
identifier otherpvt_137_04_041403.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/159492
description abstractThe benefits of autofrettage for thickwalled cylindrical vessels as a means of improving the vessel's durability and sustainability have been addressed in the published literature. However, the presence of the Bauschinger effect (BE) complicates the overall effect of autofrettage, especially when complex threedimensional crack geometries emanating from erosions at the cylinder bore are considered. In this paper, the BE's impact on the stress intensity factors (SIFs) on such cracks is investigated. The effect of various erosion geometrical configurations on the mode I SIF distribution along the front of a semielliptical crack, emanating from the deepest line of the erosion surface (DLES) at the bore of an autofrettaged, pressurized thickwalled cylinder of outertoinner radius ratio, Ro/Ri = 2, is investigated. Both autofrettage with BE (BEDA) and Hill's ideal autofrettage residual stress field (BEIA) are considered and simulated by an equivalent thermal load. The SIFs are determined for the semielliptical cracks of various crack depths to wall thickness ratio, a/t = 0.05–0.25, and ellipticities, a/c, ranging from 0.5 to 1.5, emanating from the DLES via Ansys software and the nodal displacement method. Three groups of erosion geometries are considered: (a) arc erosions of constant relative depth, d/t, equal to 5% and with relative radii of curvature, r′/t, between 5% and 30%; (b) semielliptic erosions of constant relative depth, d/t, of 5% with erosion ellipticity, d/h, varying from 0.3 to 2.0; and (c) semicircular erosions of relative depth, d/t, between 1% and 10% of the wall thickness. KIP, the SIF due to pressurization, is highly dependent on the stress concentration ahead of the DLES which directly relates to the erosion geometry. It is found that the absolute value of KIA, the SIF due to autofrettage, is just slightly reduced by the presence of the erosion. Its change solely depends on, and is directly proportional to, the erosion depth. Thus, the combined SIFs of deep cracks are found to be significantly enhanced by the presence of autofrettage and might result in a shortening of the vessel's fatigue life by up to an order of magnitude. Counteracting this, the combined SIFs are found to be significantly higher for BEDA cases than for BEIA cases. Therefore, the vessel's fatigue life can be profoundly influenced by the presence of the BE.
publisherThe American Society of Mechanical Engineers (ASME)
titleThe Bauschinger Effect's Influence on the Stress Intensity Factors of a Semi Elliptical Crack Emanating From an Erosion at the Bore of a Fully Autofrettaged Pressurized Cylinder
typeJournal Paper
journal volume137
journal issue4
journal titleJournal of Pressure Vessel Technology
identifier doi10.1115/1.4029018
journal fristpage41403
journal lastpage41403
identifier eissn1528-8978
treeJournal of Pressure Vessel Technology:;2015:;volume( 137 ):;issue: 004
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record