contributor author | Chu, Bryan | |
contributor author | Samuel, Johnson | |
date accessioned | 2017-05-09T01:22:06Z | |
date available | 2017-05-09T01:22:06Z | |
date issued | 2015 | |
identifier issn | 2166-0468 | |
identifier other | jmnm_003_04_041003.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl/handle/yetl/159231 | |
description abstract | Part II of this paper is focused on studying the droplet spreading and the subsequent evaporation/filmformation characteristics of the graphene oxide colloidal solutions that were benchmarked in Part I. A highspeed imaging investigation was conducted to study the impingement dynamics of the colloidal solutions on a heated substrate. The spreading and evaporation characteristics of the fluids were then correlated with the corresponding temperature profiles and the subsequent formation of the residual graphene oxide film on the substrate. The findings reveal that the most important criterion dictating the machining performance of these colloidal solutions is the ability to form uniform, submicron thick films of graphene oxide upon evaporation of the carrier fluid. Colloidal suspensions of ultrasonically exfoliated graphene oxide at concentrations < 0.5 wt.% are best suited for micromachining applications since they are seen to produce such films. The use of thermally reduced (TR) graphene oxide suspensions at concentrations < 0.5 wt.% results in nonuniform films with thickness variations in the 0–5 خ¼m range, which are responsible for the fluctuations seen in the cutting force and temperatures. At concentrations ≥ 0.5 wt.%, both the TR and ultrasonically exfoliated graphene oxide solutions result in thicker and nonuniform films that are detrimental for machining results. The findings of this study reveal that the characterization of the residual graphene oxide film left behind on a heated substrate may be an efficient technique to evaluate different graphene oxide colloidal solutions for cutting fluids applications in micromachining. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Graphene Oxide Colloidal Suspensions as Cutting Fluids for Micromachining—Part II: Droplet Dynamics and Film Formation | |
type | Journal Paper | |
journal volume | 3 | |
journal issue | 4 | |
journal title | Journal of Micro and Nano | |
identifier doi | 10.1115/1.4031136 | |
journal fristpage | 41003 | |
journal lastpage | 41003 | |
identifier eissn | 1932-619X | |
tree | Journal of Micro and Nano-Manufacturing:;2015:;volume( 003 ):;issue: 004 | |
contenttype | Fulltext | |