YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Optimum Mandrel Configuration for Efficient Down Hole Tube Expansion

    Source: Journal of Manufacturing Science and Engineering:;2015:;volume( 137 ):;issue: 006::page 61005
    Author:
    Al
    ,
    Pervez, Tasneem
    ,
    Qamar, Sayyad Z.
    ,
    Al
    DOI: 10.1115/1.4030302
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In the last decade, traditional tube expansion process has found an innovative application in oil and gas wells drilling and remediation. The ultimate goal is to replace the conventional telescopic wells to monodiameter wells with minimum cost, which is still a distant reality. Further to this, large diameters are needed at terminal depths for enhanced production from a single well while keeping the power required for expansion and related costs to a minimum. Progress has been made to realize slim wells by driving a rigid mandrel of a suitable diameter through the tube either mechanically or hydraulically to attain a desirable expansion ratio. This paper presents a finite element model, which predicts the drawing force for expansion, the stress field in expanded and pre/postexpanded zones, and the energy required for expansion. Through minimization of energy required for expansion, an optimum mandrel configuration, i.e., shape, size, and angle, was obtained, which can be used to achieve larger in situ expansion. It is found that mandrel with elliptical, hemispherical, and curved conical shapes has minimum resistance during expansion as compared to the widely used circular cross section mandrel with a cone angle of 10 deg. However, further manipulation of shape parameters of the circular cross section mandrel yielded an improved efficiency. The drawing force required for expansion reduces by 7–10% having minimum dissipated energy during expansion. It is also found that these mandrels yield less reduction in tube thickness after expansion, which results in higher postexpansion collapse strength. In addition, rotating a mandrel further reduces the energy required for expansion by another 7%.
    • Download: (7.442Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Optimum Mandrel Configuration for Efficient Down Hole Tube Expansion

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/158758
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorAl
    contributor authorPervez, Tasneem
    contributor authorQamar, Sayyad Z.
    contributor authorAl
    date accessioned2017-05-09T01:20:41Z
    date available2017-05-09T01:20:41Z
    date issued2015
    identifier issn1087-1357
    identifier othermanu_137_06_061005.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/158758
    description abstractIn the last decade, traditional tube expansion process has found an innovative application in oil and gas wells drilling and remediation. The ultimate goal is to replace the conventional telescopic wells to monodiameter wells with minimum cost, which is still a distant reality. Further to this, large diameters are needed at terminal depths for enhanced production from a single well while keeping the power required for expansion and related costs to a minimum. Progress has been made to realize slim wells by driving a rigid mandrel of a suitable diameter through the tube either mechanically or hydraulically to attain a desirable expansion ratio. This paper presents a finite element model, which predicts the drawing force for expansion, the stress field in expanded and pre/postexpanded zones, and the energy required for expansion. Through minimization of energy required for expansion, an optimum mandrel configuration, i.e., shape, size, and angle, was obtained, which can be used to achieve larger in situ expansion. It is found that mandrel with elliptical, hemispherical, and curved conical shapes has minimum resistance during expansion as compared to the widely used circular cross section mandrel with a cone angle of 10 deg. However, further manipulation of shape parameters of the circular cross section mandrel yielded an improved efficiency. The drawing force required for expansion reduces by 7–10% having minimum dissipated energy during expansion. It is also found that these mandrels yield less reduction in tube thickness after expansion, which results in higher postexpansion collapse strength. In addition, rotating a mandrel further reduces the energy required for expansion by another 7%.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleOptimum Mandrel Configuration for Efficient Down Hole Tube Expansion
    typeJournal Paper
    journal volume137
    journal issue6
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4030302
    journal fristpage61005
    journal lastpage61005
    identifier eissn1528-8935
    treeJournal of Manufacturing Science and Engineering:;2015:;volume( 137 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian