Show simple item record

contributor authorAl
contributor authorPervez, Tasneem
contributor authorQamar, Sayyad Z.
contributor authorAl
date accessioned2017-05-09T01:20:41Z
date available2017-05-09T01:20:41Z
date issued2015
identifier issn1087-1357
identifier othermanu_137_06_061005.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/158758
description abstractIn the last decade, traditional tube expansion process has found an innovative application in oil and gas wells drilling and remediation. The ultimate goal is to replace the conventional telescopic wells to monodiameter wells with minimum cost, which is still a distant reality. Further to this, large diameters are needed at terminal depths for enhanced production from a single well while keeping the power required for expansion and related costs to a minimum. Progress has been made to realize slim wells by driving a rigid mandrel of a suitable diameter through the tube either mechanically or hydraulically to attain a desirable expansion ratio. This paper presents a finite element model, which predicts the drawing force for expansion, the stress field in expanded and pre/postexpanded zones, and the energy required for expansion. Through minimization of energy required for expansion, an optimum mandrel configuration, i.e., shape, size, and angle, was obtained, which can be used to achieve larger in situ expansion. It is found that mandrel with elliptical, hemispherical, and curved conical shapes has minimum resistance during expansion as compared to the widely used circular cross section mandrel with a cone angle of 10 deg. However, further manipulation of shape parameters of the circular cross section mandrel yielded an improved efficiency. The drawing force required for expansion reduces by 7–10% having minimum dissipated energy during expansion. It is also found that these mandrels yield less reduction in tube thickness after expansion, which results in higher postexpansion collapse strength. In addition, rotating a mandrel further reduces the energy required for expansion by another 7%.
publisherThe American Society of Mechanical Engineers (ASME)
titleOptimum Mandrel Configuration for Efficient Down Hole Tube Expansion
typeJournal Paper
journal volume137
journal issue6
journal titleJournal of Manufacturing Science and Engineering
identifier doi10.1115/1.4030302
journal fristpage61005
journal lastpage61005
identifier eissn1528-8935
treeJournal of Manufacturing Science and Engineering:;2015:;volume( 137 ):;issue: 006
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record