YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Filtration Characteristics of Fuel Neutral Particulates Using a Heterogeneous Multiscale Filtration Model

    Source: Journal of Engineering for Gas Turbines and Power:;2015:;volume( 137 ):;issue: 011::page 111507
    Author:
    Gong, Jian
    ,
    Rutland, Christopher J.
    DOI: 10.1115/1.4030282
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Filtration characteristics of fuel neutral soot particulate were studied using a recently developed heterogeneous multiscale filtration (HMF) model. In the HMF model, a probability density function (PDF) based pore size distribution and a porosity distribution across the filter wall are introduced to represent the heterogeneous multiscale porous structure. The HMF model was validated by an exhaust filtration analysis (EFA) system, which was designed for fundamental experimental filtration studies. Various sources of particulates from combustion engines were used in the filtration studies. Some particulates were sampled from a spark ignited direct injection (SIDI) engine fueled with gasoline and ethanol blends. Particulates from a compression ignition engine fueled with diesel for conventional and advanced combustion regimes were investigated as well. The microstructure of the porous wall was found to be more critical and necessary to simulate filtration of particulates from gasoline and advanced diesel combustion engines than those from conventional diesel combustion (CDC) engines. The interactions between the porous wall and trapped particulates were investigated. The dynamic filtration characteristics, including filtration efficiency, pressure drop and particulate distribution inside the wall are strongly dependent on total particulate volume rather than total particulate number concentration. The change of the filter structure as well as the shape of the particulate size distribution play important roles on particulate penetration.
    • Download: (1.477Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Filtration Characteristics of Fuel Neutral Particulates Using a Heterogeneous Multiscale Filtration Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/158075
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorGong, Jian
    contributor authorRutland, Christopher J.
    date accessioned2017-05-09T01:18:20Z
    date available2017-05-09T01:18:20Z
    date issued2015
    identifier issn1528-8919
    identifier othergtp_137_11_111507.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/158075
    description abstractFiltration characteristics of fuel neutral soot particulate were studied using a recently developed heterogeneous multiscale filtration (HMF) model. In the HMF model, a probability density function (PDF) based pore size distribution and a porosity distribution across the filter wall are introduced to represent the heterogeneous multiscale porous structure. The HMF model was validated by an exhaust filtration analysis (EFA) system, which was designed for fundamental experimental filtration studies. Various sources of particulates from combustion engines were used in the filtration studies. Some particulates were sampled from a spark ignited direct injection (SIDI) engine fueled with gasoline and ethanol blends. Particulates from a compression ignition engine fueled with diesel for conventional and advanced combustion regimes were investigated as well. The microstructure of the porous wall was found to be more critical and necessary to simulate filtration of particulates from gasoline and advanced diesel combustion engines than those from conventional diesel combustion (CDC) engines. The interactions between the porous wall and trapped particulates were investigated. The dynamic filtration characteristics, including filtration efficiency, pressure drop and particulate distribution inside the wall are strongly dependent on total particulate volume rather than total particulate number concentration. The change of the filter structure as well as the shape of the particulate size distribution play important roles on particulate penetration.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleFiltration Characteristics of Fuel Neutral Particulates Using a Heterogeneous Multiscale Filtration Model
    typeJournal Paper
    journal volume137
    journal issue11
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4030282
    journal fristpage111507
    journal lastpage111507
    identifier eissn0742-4795
    treeJournal of Engineering for Gas Turbines and Power:;2015:;volume( 137 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian