YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Development of an Innovative Multisensor Waveguide Probe With Improved Measurement Capabilities

    Source: Journal of Engineering for Gas Turbines and Power:;2015:;volume( 137 ):;issue: 005::page 51601
    Author:
    Lenzi, Giulio
    ,
    Fioravanti, Andrea
    ,
    Ferrara, Giovanni
    ,
    Ferrari, Lorenzo
    DOI: 10.1115/1.4028682
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Currently, waveguide probes are widely used in several turbomachinery applications ranging from the analysis of flow instabilities to the investigation of thermoacoustic phenomena. There are many advantages to using a waveguide probe. For example, the same sensor can be adopted for different measurement points, thus reducing the total number of sensors or a cheaper sensor with a lower operating temperature capability can be used instead of a more expensive one in case of high temperature applications. Typically, a waveguide probe is made up of a transmitting duct which connects the measurement point with a sensor housing and a damping duct which attenuates the pressure fluctuations reflected by the duct end. If properly designed (i.e., with a very long damping duct), the theoretical response of a waveguide has a monotone trend with an attenuation factor that increases with the frequency and the length of the transmitting duct. Unfortunately, the real geometry of the waveguide components and the type of connection between them have a strong influence on the behavior of the system. Even the smallest discontinuity in the duct connections can lead to a very complex frequency response and a reduced operating range. The geometry of the sensor housing itself is another element which contributes to increasing the differences between the expected and real frequency responses of a waveguide, since its impedance is generally unknown. Previous studies developed by the authors have demonstrated that the replacement of the damping duct with a properly designed termination could be a good solution to increase the waveguide operating range and center it on the frequencies of interest. In detail, the termination could be used to balance the detrimental effects of discontinuities and sensor presence. In this paper, an innovative waveguide system leading to a further increase of the operating range is proposed and tested. The system is based on the measurement of the pressure oscillations propagating in the transmitting duct by means of three sensors placed at different distances from the pressure tap. The pressures measured by the three sensors are then combined and processed to calculate the pressure at the transmitting duct inlet. The arrangement of the sensing elements and the geometry of the termination are designed to minimize the error of this estimation. The frequency response achieved with the proposed arrangement turns out to be very flat over a wide range of frequencies. Thanks to the minor errors in the estimation of pressure modulus and phase, the probe is also suitable for the signal reconstruction both in frequency and time domain.
    • Download: (2.732Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Development of an Innovative Multisensor Waveguide Probe With Improved Measurement Capabilities

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/157939
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorLenzi, Giulio
    contributor authorFioravanti, Andrea
    contributor authorFerrara, Giovanni
    contributor authorFerrari, Lorenzo
    date accessioned2017-05-09T01:17:48Z
    date available2017-05-09T01:17:48Z
    date issued2015
    identifier issn1528-8919
    identifier othergtp_137_05_051601.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/157939
    description abstractCurrently, waveguide probes are widely used in several turbomachinery applications ranging from the analysis of flow instabilities to the investigation of thermoacoustic phenomena. There are many advantages to using a waveguide probe. For example, the same sensor can be adopted for different measurement points, thus reducing the total number of sensors or a cheaper sensor with a lower operating temperature capability can be used instead of a more expensive one in case of high temperature applications. Typically, a waveguide probe is made up of a transmitting duct which connects the measurement point with a sensor housing and a damping duct which attenuates the pressure fluctuations reflected by the duct end. If properly designed (i.e., with a very long damping duct), the theoretical response of a waveguide has a monotone trend with an attenuation factor that increases with the frequency and the length of the transmitting duct. Unfortunately, the real geometry of the waveguide components and the type of connection between them have a strong influence on the behavior of the system. Even the smallest discontinuity in the duct connections can lead to a very complex frequency response and a reduced operating range. The geometry of the sensor housing itself is another element which contributes to increasing the differences between the expected and real frequency responses of a waveguide, since its impedance is generally unknown. Previous studies developed by the authors have demonstrated that the replacement of the damping duct with a properly designed termination could be a good solution to increase the waveguide operating range and center it on the frequencies of interest. In detail, the termination could be used to balance the detrimental effects of discontinuities and sensor presence. In this paper, an innovative waveguide system leading to a further increase of the operating range is proposed and tested. The system is based on the measurement of the pressure oscillations propagating in the transmitting duct by means of three sensors placed at different distances from the pressure tap. The pressures measured by the three sensors are then combined and processed to calculate the pressure at the transmitting duct inlet. The arrangement of the sensing elements and the geometry of the termination are designed to minimize the error of this estimation. The frequency response achieved with the proposed arrangement turns out to be very flat over a wide range of frequencies. Thanks to the minor errors in the estimation of pressure modulus and phase, the probe is also suitable for the signal reconstruction both in frequency and time domain.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDevelopment of an Innovative Multisensor Waveguide Probe With Improved Measurement Capabilities
    typeJournal Paper
    journal volume137
    journal issue5
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4028682
    journal fristpage51601
    journal lastpage51601
    identifier eissn0742-4795
    treeJournal of Engineering for Gas Turbines and Power:;2015:;volume( 137 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian