YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Investigations of Spark Ignition in a Model Combustor With Synthesis Gas

    Source: Journal of Engineering for Gas Turbines and Power:;2015:;volume( 137 ):;issue: 005::page 51502
    Author:
    Zhang, Xiaoyu
    ,
    Zhong, Di
    ,
    Weng, Fanglong
    ,
    Zhu, Min
    DOI: 10.1115/1.4028666
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The components of syngas derived from coal, biomass, and waste are significantly different from those of typical gas turbine fuels, such as natural gas and fuel oils. The variations of hydrogen and inert gases can modify both the fluid and the combustion dynamics in the combustor. In particular, the characteristics of spark ignition can be profoundly affected. To understand the correlation between the varying fuel components and the reliability of ignition, a test system for spark ignition was established. The model combustor with a partialpremixed swirl burner was employed. The blending fuel with five components, hydrogen, carbon monoxide, methane, carbon dioxide and nitrogen, was used to model the synthesis gas used in industry. The ignition energy and the number of sparks leading to successful ignition were recorded. By varying the fuel components, the synthesis gases altered from medium to lower heat value fuels. The ignition time, ignition limit, and subsequent flame developments with variations of air mass flow rates and fuel components were systematically investigated. With the increase of airflow, the syngas with a lower hydrogen content has a shorter ignition time compared with higher hydrogen syngas in the lean condition, whereas in the rich condition, syngas with a higher hydrogen content has a shorter ignition time. The effects of the hydrogen content, inlet air Reynolds number and spark energy on the ignition limit were investigated. The ignition limit was enlarged with the increase in the hydrogen content and the spark energy. Meanwhile, three distinct flame patterns after ignition were investigated. Finally, a map for the characteristics of the ignition and subsequent flame development was obtained. The results are expected to provide valuable information for the design and operation of stable syngas combustion systems and also provide experimental data for the validations of theoretical modeling and numerical computations.
    • Download: (4.293Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Investigations of Spark Ignition in a Model Combustor With Synthesis Gas

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/157937
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorZhang, Xiaoyu
    contributor authorZhong, Di
    contributor authorWeng, Fanglong
    contributor authorZhu, Min
    date accessioned2017-05-09T01:17:48Z
    date available2017-05-09T01:17:48Z
    date issued2015
    identifier issn1528-8919
    identifier othergtp_137_05_051502.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/157937
    description abstractThe components of syngas derived from coal, biomass, and waste are significantly different from those of typical gas turbine fuels, such as natural gas and fuel oils. The variations of hydrogen and inert gases can modify both the fluid and the combustion dynamics in the combustor. In particular, the characteristics of spark ignition can be profoundly affected. To understand the correlation between the varying fuel components and the reliability of ignition, a test system for spark ignition was established. The model combustor with a partialpremixed swirl burner was employed. The blending fuel with five components, hydrogen, carbon monoxide, methane, carbon dioxide and nitrogen, was used to model the synthesis gas used in industry. The ignition energy and the number of sparks leading to successful ignition were recorded. By varying the fuel components, the synthesis gases altered from medium to lower heat value fuels. The ignition time, ignition limit, and subsequent flame developments with variations of air mass flow rates and fuel components were systematically investigated. With the increase of airflow, the syngas with a lower hydrogen content has a shorter ignition time compared with higher hydrogen syngas in the lean condition, whereas in the rich condition, syngas with a higher hydrogen content has a shorter ignition time. The effects of the hydrogen content, inlet air Reynolds number and spark energy on the ignition limit were investigated. The ignition limit was enlarged with the increase in the hydrogen content and the spark energy. Meanwhile, three distinct flame patterns after ignition were investigated. Finally, a map for the characteristics of the ignition and subsequent flame development was obtained. The results are expected to provide valuable information for the design and operation of stable syngas combustion systems and also provide experimental data for the validations of theoretical modeling and numerical computations.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleExperimental Investigations of Spark Ignition in a Model Combustor With Synthesis Gas
    typeJournal Paper
    journal volume137
    journal issue5
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4028666
    journal fristpage51502
    journal lastpage51502
    identifier eissn0742-4795
    treeJournal of Engineering for Gas Turbines and Power:;2015:;volume( 137 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian