YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    On the Optimization of a Geared Fan Intercooled Core Engine Design

    Source: Journal of Engineering for Gas Turbines and Power:;2015:;volume( 137 ):;issue: 004::page 41201
    Author:
    Kyprianidis, Konstantinos G.
    ,
    Rolt, Andrew M.
    DOI: 10.1115/1.4028544
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Reduction of CO2 emissions is strongly linked with the improvement of engine specific fuel consumption (SFC), as well as the reduction of engine nacelle drag and weight. One alternative design approach to improving SFC is to consider a geared fan combined with an increased overall pressure ratio (OPR) intercooled core performance cycle. Thermal benefits from intercooling have been well documented in the literature. Nevertheless, there is little information available in the public domain with respect to design space exploration of such an engine concept when combined with a geared fan. The present work uses a multidisciplinary conceptual design tool to further analyze the option of an intercooled core geared fan aero engine for long haul applications with a 2020 entry into service technology level assumption. The proposed design methodology is capable, with the utilized tool, of exploring the interaction of design criteria and providing critical design insight at engine–aircraft system level. Previous work by the authors focused on understanding the design space for this particular configuration with minimum SFC, engine weight, and mission fuel in mind. This was achieved by means of a parametric analysis, varying several engine design parameters—but only one at a time. The present work attempts to identify “globallyâ€‌ fuel burn optimal values for a set of engine design parameters by varying them all simultaneously. This permits the nonlinear interactions between the parameters to be accounted for. Special attention has been given to the fuel burn impact of the reduced high pressure compressor (HPC) efficiency levels associated with low last stage blade heights. Three fuel optimal designs are considered, based on different assumptions. The results indicate that it is preferable to trade OPR and pressure ratio split exponent, rather than specific thrust, as means of increasing blade height and hence reducing the associated fuel consumption penalties. It is interesting to note that even when considering the effect of HPC last stage blade height on efficiency there is still an equivalently good design at a reduced OPR. This provides evidence that the overall economic optimum could be for a lower OPR cycle. Customer requirements such as takeoff distance and time to height play a very important role in determining a fuel optimal engine design. Tougher customer requirements result in bigger and heavier engines that burn more fuel. Higher OPR intercooled engine cycles clearly become more attractive in aircraft applications that require larger engine sizes.
    • Download: (3.207Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      On the Optimization of a Geared Fan Intercooled Core Engine Design

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/157907
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorKyprianidis, Konstantinos G.
    contributor authorRolt, Andrew M.
    date accessioned2017-05-09T01:17:41Z
    date available2017-05-09T01:17:41Z
    date issued2015
    identifier issn1528-8919
    identifier othergtp_137_04_041201.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/157907
    description abstractReduction of CO2 emissions is strongly linked with the improvement of engine specific fuel consumption (SFC), as well as the reduction of engine nacelle drag and weight. One alternative design approach to improving SFC is to consider a geared fan combined with an increased overall pressure ratio (OPR) intercooled core performance cycle. Thermal benefits from intercooling have been well documented in the literature. Nevertheless, there is little information available in the public domain with respect to design space exploration of such an engine concept when combined with a geared fan. The present work uses a multidisciplinary conceptual design tool to further analyze the option of an intercooled core geared fan aero engine for long haul applications with a 2020 entry into service technology level assumption. The proposed design methodology is capable, with the utilized tool, of exploring the interaction of design criteria and providing critical design insight at engine–aircraft system level. Previous work by the authors focused on understanding the design space for this particular configuration with minimum SFC, engine weight, and mission fuel in mind. This was achieved by means of a parametric analysis, varying several engine design parameters—but only one at a time. The present work attempts to identify “globallyâ€‌ fuel burn optimal values for a set of engine design parameters by varying them all simultaneously. This permits the nonlinear interactions between the parameters to be accounted for. Special attention has been given to the fuel burn impact of the reduced high pressure compressor (HPC) efficiency levels associated with low last stage blade heights. Three fuel optimal designs are considered, based on different assumptions. The results indicate that it is preferable to trade OPR and pressure ratio split exponent, rather than specific thrust, as means of increasing blade height and hence reducing the associated fuel consumption penalties. It is interesting to note that even when considering the effect of HPC last stage blade height on efficiency there is still an equivalently good design at a reduced OPR. This provides evidence that the overall economic optimum could be for a lower OPR cycle. Customer requirements such as takeoff distance and time to height play a very important role in determining a fuel optimal engine design. Tougher customer requirements result in bigger and heavier engines that burn more fuel. Higher OPR intercooled engine cycles clearly become more attractive in aircraft applications that require larger engine sizes.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleOn the Optimization of a Geared Fan Intercooled Core Engine Design
    typeJournal Paper
    journal volume137
    journal issue4
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4028544
    journal fristpage41201
    journal lastpage41201
    identifier eissn0742-4795
    treeJournal of Engineering for Gas Turbines and Power:;2015:;volume( 137 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian