YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Pressurized SOFC Hybrid Systems: Control System Study and Experimental Verification

    Source: Journal of Engineering for Gas Turbines and Power:;2015:;volume( 137 ):;issue: 003::page 31602
    Author:
    Larosa, Luca
    ,
    Traverso, Alberto
    ,
    Ferrari, Mario L.
    ,
    Zaccaria, Valentina
    DOI: 10.1115/1.4028447
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this paper, two different advanced control approaches for a pressurized solid oxide fuel cell (SOFC) hybrid system are investigated and compared against traditional proportional integral derivative (PID). Both advanced control methods use model predictive control (MPC): in the first case, the MPC has direct access to the plant manipulated variables, in the second case, the MPC operates on the setpoints of PIDs which control the plant. In the second approach, the idea is to use MPC at the highest level of the plant control system to optimize the performance of bottoming PIDs, retaining system stability and operator confidence. Two MIMO (multiinput multioutput) controllers were obtained: fuel cell power and cathode inlet temperature are the controlled variables; fuel cell bypass flow, current and fuel mass flow rate (the utilization factor kept constant) are the manipulated variables. The two advanced control methods were tested and compared against the conventional PID approach using a SOFC hybrid system model. Then, the MPC controller was implemented in the hybrid system emulator test rig developed by the thermochemical power group (TPG) at the University of Genoa. Experimental tests were carried out to compare MPC against classic PID method: load following tests were carried out. Ramping the fuel cell load from 100% to 80% and back, keeping constant the target of the cathode inlet temperature, the MPC controller was able to reduce the mismatch between the actual and the target values of the cathode inlet temperature from 7 K maximum of the PID controller to 3 K maximum, showing more stable behavior in general.
    • Download: (1.758Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Pressurized SOFC Hybrid Systems: Control System Study and Experimental Verification

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/157884
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorLarosa, Luca
    contributor authorTraverso, Alberto
    contributor authorFerrari, Mario L.
    contributor authorZaccaria, Valentina
    date accessioned2017-05-09T01:17:35Z
    date available2017-05-09T01:17:35Z
    date issued2015
    identifier issn1528-8919
    identifier othergtp_137_03_031602.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/157884
    description abstractIn this paper, two different advanced control approaches for a pressurized solid oxide fuel cell (SOFC) hybrid system are investigated and compared against traditional proportional integral derivative (PID). Both advanced control methods use model predictive control (MPC): in the first case, the MPC has direct access to the plant manipulated variables, in the second case, the MPC operates on the setpoints of PIDs which control the plant. In the second approach, the idea is to use MPC at the highest level of the plant control system to optimize the performance of bottoming PIDs, retaining system stability and operator confidence. Two MIMO (multiinput multioutput) controllers were obtained: fuel cell power and cathode inlet temperature are the controlled variables; fuel cell bypass flow, current and fuel mass flow rate (the utilization factor kept constant) are the manipulated variables. The two advanced control methods were tested and compared against the conventional PID approach using a SOFC hybrid system model. Then, the MPC controller was implemented in the hybrid system emulator test rig developed by the thermochemical power group (TPG) at the University of Genoa. Experimental tests were carried out to compare MPC against classic PID method: load following tests were carried out. Ramping the fuel cell load from 100% to 80% and back, keeping constant the target of the cathode inlet temperature, the MPC controller was able to reduce the mismatch between the actual and the target values of the cathode inlet temperature from 7 K maximum of the PID controller to 3 K maximum, showing more stable behavior in general.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePressurized SOFC Hybrid Systems: Control System Study and Experimental Verification
    typeJournal Paper
    journal volume137
    journal issue3
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4028447
    journal fristpage31602
    journal lastpage31602
    identifier eissn0742-4795
    treeJournal of Engineering for Gas Turbines and Power:;2015:;volume( 137 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian