YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Analysis of the Constraint Joint Loading in the Thumb During Pipetting

    Source: Journal of Biomechanical Engineering:;2015:;volume( 137 ):;issue: 008::page 84501
    Author:
    Wu, John Z.
    ,
    Sinsel, Erik W.
    ,
    Zhao, Kristin D.
    ,
    An, Kai
    ,
    Buczek, Frank L.
    DOI: 10.1115/1.4030311
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Dynamic loading on articular joints is essential for the evaluation of the risk of the articulation degeneration associated with occupational activities. In the current study, we analyzed the dynamic constraint loading for the thumb during pipetting. The constraint loading is considered as the loading that has to be carried by the connective tissues of the joints (i.e., the cartilage layer and the ligaments) to maintain the kinematic constraints of the system. The joint loadings are solved using a classic freebody approach, using the external loading and muscle forces, which were obtained in an inverse dynamic approach combined with an optimization procedure in anybody. The constraint forces in the thumb joint obtained in the current study are compared with those obtained in the pinch and grasp tests in a previous study (Cooney and Chao, 1977, “Biomechanical Analysis of Static Forces in the Thumb During Hand Function,â€‌ J. Bone Joint Surg. Am., 59(1), pp. 27–36). The maximal compression force during pipetting is approximately 83% and 60% greater than those obtained in the tip pinch and key pinch, respectively, while substantially smaller than that obtained during grasping. The maximal lateral shear force is approximately six times, 32 times, and 90% greater than those obtained in the tip pinch, key pinch, and grasp, respectively. The maximal dorsal shear force during pipetting is approximately 3.2 and 1.4 times greater than those obtained in the tip pinch and key pinch, respectively, while substantially smaller than that obtained during grasping. Our analysis indicated that the thumb joints are subjected to repetitive, intensive loading during pipetting, compared to other daily activities.
    • Download: (1.365Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Analysis of the Constraint Joint Loading in the Thumb During Pipetting

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/157171
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorWu, John Z.
    contributor authorSinsel, Erik W.
    contributor authorZhao, Kristin D.
    contributor authorAn, Kai
    contributor authorBuczek, Frank L.
    date accessioned2017-05-09T01:15:21Z
    date available2017-05-09T01:15:21Z
    date issued2015
    identifier issn0148-0731
    identifier otherbio_137_08_084501.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/157171
    description abstractDynamic loading on articular joints is essential for the evaluation of the risk of the articulation degeneration associated with occupational activities. In the current study, we analyzed the dynamic constraint loading for the thumb during pipetting. The constraint loading is considered as the loading that has to be carried by the connective tissues of the joints (i.e., the cartilage layer and the ligaments) to maintain the kinematic constraints of the system. The joint loadings are solved using a classic freebody approach, using the external loading and muscle forces, which were obtained in an inverse dynamic approach combined with an optimization procedure in anybody. The constraint forces in the thumb joint obtained in the current study are compared with those obtained in the pinch and grasp tests in a previous study (Cooney and Chao, 1977, “Biomechanical Analysis of Static Forces in the Thumb During Hand Function,â€‌ J. Bone Joint Surg. Am., 59(1), pp. 27–36). The maximal compression force during pipetting is approximately 83% and 60% greater than those obtained in the tip pinch and key pinch, respectively, while substantially smaller than that obtained during grasping. The maximal lateral shear force is approximately six times, 32 times, and 90% greater than those obtained in the tip pinch, key pinch, and grasp, respectively. The maximal dorsal shear force during pipetting is approximately 3.2 and 1.4 times greater than those obtained in the tip pinch and key pinch, respectively, while substantially smaller than that obtained during grasping. Our analysis indicated that the thumb joints are subjected to repetitive, intensive loading during pipetting, compared to other daily activities.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAnalysis of the Constraint Joint Loading in the Thumb During Pipetting
    typeJournal Paper
    journal volume137
    journal issue8
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4030311
    journal fristpage84501
    journal lastpage84501
    identifier eissn1528-8951
    treeJournal of Biomechanical Engineering:;2015:;volume( 137 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian