YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Economic Chances and Technical Risks of the Internal Direct Absorption Receiver

    Source: Journal of Solar Energy Engineering:;2014:;volume( 136 ):;issue: 002::page 21013
    Author:
    Singer, Csaba
    ,
    Buck, Reiner
    ,
    Pitz
    ,
    Mأ¼ller
    DOI: 10.1115/1.4024933
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Increased receiver temperatures of solar tower power plants are proposed to decrease the plants levelized electricity costs (LEC) due to the utilization of supercritical steam power plants and thus higher overall plant efficiency. Related to elevated receiver temperatures preliminary concept studies show a distinct LEC reduction potential of the internal direct absorption receiver (IDAR), if it is compared to liquid in tube (LIT) or beamdown (BD) receiver types. The IDAR is characterized by a downward oriented aperture of a cylindrical cavity, whose internal lateral area is illuminated from the concentrator field and cooled by a liquid molten salt film. The objective is the further efficiency enhancement, as well as the identification and assessment of the technical critical aspects. For this a detailed fluid mechanic and thermodynamic receiver model of the novel receiver concept is developed to be able to analyze the IDAR's operating performance at full size receiver geometries. The model is used to analyze the open parameters concerning the feasibility, functionality and performance of the concept. Hence, different system management strategies are examined and assessed, which lead to the proposal of a cost optimized leadconcept. This concept involves a rotating receiver system with inclined absorber walls. The spatial arrangements of the absorber walls minimize thermal losses of the receiver and enhance film stability. The centrifugal forces acting on the liquid salt film are essential to realize the required system criteria, which are related to the maximal molten salt temperature, film stability and droplet ejection. Compared to the state of the art at a 200 MWel power level the IDAR concept can lead to a LEC reduction of up to 8%. The cost assumptions made for the assessment are quantified with sensitivity analysis.
    • Download: (2.242Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Economic Chances and Technical Risks of the Internal Direct Absorption Receiver

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/156263
    Collections
    • Journal of Solar Energy Engineering

    Show full item record

    contributor authorSinger, Csaba
    contributor authorBuck, Reiner
    contributor authorPitz
    contributor authorMأ¼ller
    date accessioned2017-05-09T01:12:22Z
    date available2017-05-09T01:12:22Z
    date issued2014
    identifier issn0199-6231
    identifier othersol_136_02_021013.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/156263
    description abstractIncreased receiver temperatures of solar tower power plants are proposed to decrease the plants levelized electricity costs (LEC) due to the utilization of supercritical steam power plants and thus higher overall plant efficiency. Related to elevated receiver temperatures preliminary concept studies show a distinct LEC reduction potential of the internal direct absorption receiver (IDAR), if it is compared to liquid in tube (LIT) or beamdown (BD) receiver types. The IDAR is characterized by a downward oriented aperture of a cylindrical cavity, whose internal lateral area is illuminated from the concentrator field and cooled by a liquid molten salt film. The objective is the further efficiency enhancement, as well as the identification and assessment of the technical critical aspects. For this a detailed fluid mechanic and thermodynamic receiver model of the novel receiver concept is developed to be able to analyze the IDAR's operating performance at full size receiver geometries. The model is used to analyze the open parameters concerning the feasibility, functionality and performance of the concept. Hence, different system management strategies are examined and assessed, which lead to the proposal of a cost optimized leadconcept. This concept involves a rotating receiver system with inclined absorber walls. The spatial arrangements of the absorber walls minimize thermal losses of the receiver and enhance film stability. The centrifugal forces acting on the liquid salt film are essential to realize the required system criteria, which are related to the maximal molten salt temperature, film stability and droplet ejection. Compared to the state of the art at a 200 MWel power level the IDAR concept can lead to a LEC reduction of up to 8%. The cost assumptions made for the assessment are quantified with sensitivity analysis.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEconomic Chances and Technical Risks of the Internal Direct Absorption Receiver
    typeJournal Paper
    journal volume136
    journal issue2
    journal titleJournal of Solar Energy Engineering
    identifier doi10.1115/1.4024933
    journal fristpage21013
    journal lastpage21013
    identifier eissn1528-8986
    treeJournal of Solar Energy Engineering:;2014:;volume( 136 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian