YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Solar Energy Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Computational Analysis of a Pipe Flow Distributor for a Thermocline Based Thermal Energy Storage System

    Source: Journal of Solar Energy Engineering:;2014:;volume( 136 ):;issue: 002::page 21010
    Author:
    Afrin, Samia
    ,
    Kumar, Vinod
    ,
    Bharathan, Desikan
    ,
    Glatzmaier, Greg C.
    ,
    Ma, Zhiwen
    DOI: 10.1115/1.4024927
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The overall efficiency of a concentrating solar power (CSP) plant depends on the effectiveness of thermal energy storage (TES) system (Kearney and Herrmann, 2002, “Assessment of a Molten Salt Heat Transfer Fluid,â€‌ ASME). A single tank TES system consists of a thermocline region which produces the temperature gradient between hot and cold storage fluid by density difference (Energy Efficiency and Renewable Energy, http://www.eere.energy.gov/basics/renewable_energy/thermal_storage.html). Preservation of this thermocline region in the tank during charging and discharging cycles depends on the uniformity of the velocity profile at any horizontal plane. Our objective is to maximize the uniformity of the velocity distribution using a pipenetwork distributor by varying the number of holes, distance between the holes, position of the holes and number of distributor pipes. For simplicity, we consider that the diameter of the inlet, main pipe, the distributor pipes and the height and the width of the tank are constant. We use Hitecآ® molten salt as the storage medium and the commercial software Gambit 2.4.6 and Fluent 6.3 for the computational analysis. We analyze the standard deviation in the velocity field and compare the deviations at different positions of the tank height for different configurations. Since the distance of the holes from the inlet and their respective arrangements affects the flow distribution throughout the tank; we investigate the impacts of rearranging the holes position on flow distribution. Impact of the number of holes and distributor pipes are also analyzed. We analyze our findings to determine a configuration for the best case scenario.
    • Download: (1.205Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Computational Analysis of a Pipe Flow Distributor for a Thermocline Based Thermal Energy Storage System

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/156260
    Collections
    • Journal of Solar Energy Engineering

    Show full item record

    contributor authorAfrin, Samia
    contributor authorKumar, Vinod
    contributor authorBharathan, Desikan
    contributor authorGlatzmaier, Greg C.
    contributor authorMa, Zhiwen
    date accessioned2017-05-09T01:12:21Z
    date available2017-05-09T01:12:21Z
    date issued2014
    identifier issn0199-6231
    identifier othersol_136_02_021010.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/156260
    description abstractThe overall efficiency of a concentrating solar power (CSP) plant depends on the effectiveness of thermal energy storage (TES) system (Kearney and Herrmann, 2002, “Assessment of a Molten Salt Heat Transfer Fluid,â€‌ ASME). A single tank TES system consists of a thermocline region which produces the temperature gradient between hot and cold storage fluid by density difference (Energy Efficiency and Renewable Energy, http://www.eere.energy.gov/basics/renewable_energy/thermal_storage.html). Preservation of this thermocline region in the tank during charging and discharging cycles depends on the uniformity of the velocity profile at any horizontal plane. Our objective is to maximize the uniformity of the velocity distribution using a pipenetwork distributor by varying the number of holes, distance between the holes, position of the holes and number of distributor pipes. For simplicity, we consider that the diameter of the inlet, main pipe, the distributor pipes and the height and the width of the tank are constant. We use Hitecآ® molten salt as the storage medium and the commercial software Gambit 2.4.6 and Fluent 6.3 for the computational analysis. We analyze the standard deviation in the velocity field and compare the deviations at different positions of the tank height for different configurations. Since the distance of the holes from the inlet and their respective arrangements affects the flow distribution throughout the tank; we investigate the impacts of rearranging the holes position on flow distribution. Impact of the number of holes and distributor pipes are also analyzed. We analyze our findings to determine a configuration for the best case scenario.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleComputational Analysis of a Pipe Flow Distributor for a Thermocline Based Thermal Energy Storage System
    typeJournal Paper
    journal volume136
    journal issue2
    journal titleJournal of Solar Energy Engineering
    identifier doi10.1115/1.4024927
    journal fristpage21010
    journal lastpage21010
    identifier eissn1528-8986
    treeJournal of Solar Energy Engineering:;2014:;volume( 136 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian