YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Coal Based Cogeneration System for Synthetic/Substitute Natural Gas and Power With CO2 Capture After Methanation: Coupling Between Chemical and Power Production

    Source: Journal of Engineering for Gas Turbines and Power:;2014:;volume( 136 ):;issue: 009::page 91501
    Author:
    Li, Sheng
    ,
    Jin, Hongguang
    ,
    Gao, Lin
    DOI: 10.1115/1.4026928
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Cogeneration of synthetic natural gas (SNG) and power from coal efficiently and CO2 capture with low energy penalty during coal utilization are very important technical paths to implement clean coal technologies in China. This paper integrates a novel coal based cogeneration system with CO2 capture after chemical synthesis to produce SNG and power, and presents the energetic and exergy analysis based on the thermodynamic formulas and the use of ASPEN PLUS 11.0. In the novel system, instead of separation from the gas before chemical synthesis traditionally, CO2 will be removed from the unconverted gas after synthesis, whose concentration can reach as high as 55% before separation and is much higher than 30% in traditional SNG production system. And by moderate recycle instead of full recycle of chemical unconverted gas back into SNG synthesis, the sharp increase in energy consumption for SNG synthesis with conversion ratios will be avoided, and by using part of the chemical unconverted gas, power is cogenerated efficiently. Thermodynamic analysis shows that the benefit from both systematic integration and high CO2 concentration makes the system have good efficiency and low energy penalty for CO2 capture. The overall efficiency of the system ranges from 53%–62% at different recycle ratios. Compared to traditional single product systems (IGCC with CO2 capture for power, traditional SNG system for SNG production), the energy saving ratio (ESR) of the novel system is 16%–21%. And compared to IGCC and traditional SNG system, the energy saving benefit from cogeneration can even offset the energy consumption for CO2 separation, and thus zero energy/efficiency penalties for CO2 capture can be realized through system integration when the chemicals to power output ratio (CPOR) varies in the range of 1.0–4.6. Sensitivity analysis hints that an optimized recycle ratio of the unconverted gas and CPOR can maximize system performance (The optimized Ru for ESR maximum is around 9, 4.2, and 4.0, and the corresponding CPOR is around 4.25, 3.89, and 3.84, at د„ = 4.94, 5.28 and 5.61), and minimize the efficiency penalty for CO2 capture (The optimized Ru for minimization of CO2 capture energy penalty is around 6.37 and the corresponding CPOR is around 3.97 at د„ = 4.94, خµâ€‰= 16.5). The polygeneration plant with CO2 capture after chemical synthesis has a good thermodynamic and environmental performance and may be an option for clean coal technologies and CO2 emission abatement.
    • Download: (1.316Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Coal Based Cogeneration System for Synthetic/Substitute Natural Gas and Power With CO2 Capture After Methanation: Coupling Between Chemical and Power Production

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/154777
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorLi, Sheng
    contributor authorJin, Hongguang
    contributor authorGao, Lin
    date accessioned2017-05-09T01:07:51Z
    date available2017-05-09T01:07:51Z
    date issued2014
    identifier issn1528-8919
    identifier othergtp_136_09_091501.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/154777
    description abstractCogeneration of synthetic natural gas (SNG) and power from coal efficiently and CO2 capture with low energy penalty during coal utilization are very important technical paths to implement clean coal technologies in China. This paper integrates a novel coal based cogeneration system with CO2 capture after chemical synthesis to produce SNG and power, and presents the energetic and exergy analysis based on the thermodynamic formulas and the use of ASPEN PLUS 11.0. In the novel system, instead of separation from the gas before chemical synthesis traditionally, CO2 will be removed from the unconverted gas after synthesis, whose concentration can reach as high as 55% before separation and is much higher than 30% in traditional SNG production system. And by moderate recycle instead of full recycle of chemical unconverted gas back into SNG synthesis, the sharp increase in energy consumption for SNG synthesis with conversion ratios will be avoided, and by using part of the chemical unconverted gas, power is cogenerated efficiently. Thermodynamic analysis shows that the benefit from both systematic integration and high CO2 concentration makes the system have good efficiency and low energy penalty for CO2 capture. The overall efficiency of the system ranges from 53%–62% at different recycle ratios. Compared to traditional single product systems (IGCC with CO2 capture for power, traditional SNG system for SNG production), the energy saving ratio (ESR) of the novel system is 16%–21%. And compared to IGCC and traditional SNG system, the energy saving benefit from cogeneration can even offset the energy consumption for CO2 separation, and thus zero energy/efficiency penalties for CO2 capture can be realized through system integration when the chemicals to power output ratio (CPOR) varies in the range of 1.0–4.6. Sensitivity analysis hints that an optimized recycle ratio of the unconverted gas and CPOR can maximize system performance (The optimized Ru for ESR maximum is around 9, 4.2, and 4.0, and the corresponding CPOR is around 4.25, 3.89, and 3.84, at د„ = 4.94, 5.28 and 5.61), and minimize the efficiency penalty for CO2 capture (The optimized Ru for minimization of CO2 capture energy penalty is around 6.37 and the corresponding CPOR is around 3.97 at د„ = 4.94, خµâ€‰= 16.5). The polygeneration plant with CO2 capture after chemical synthesis has a good thermodynamic and environmental performance and may be an option for clean coal technologies and CO2 emission abatement.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleCoal Based Cogeneration System for Synthetic/Substitute Natural Gas and Power With CO2 Capture After Methanation: Coupling Between Chemical and Power Production
    typeJournal Paper
    journal volume136
    journal issue9
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4026928
    journal fristpage91501
    journal lastpage91501
    identifier eissn0742-4795
    treeJournal of Engineering for Gas Turbines and Power:;2014:;volume( 136 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian