YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Flame Dynamics With Hydrogen Addition at Lean Blowout Limits

    Source: Journal of Engineering for Gas Turbines and Power:;2014:;volume( 136 ):;issue: 005::page 51506
    Author:
    Zhu, Shengrong
    ,
    Acharya, Sumanta
    DOI: 10.1115/1.4026321
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Lean premixed combustion is widely used in power generation due to low nitric oxide emissions. Recent interest in syngas requires a better understanding of the role of hydrogen addition on the combustion process. In the present study, the extinction process of hydrogen enriched premixed flames near lean blow out (LBO) in a swirlstabilized combustor has been examined in both unconfined and confined configurations. High speed images of the flame chemiluminescence are recorded, and a proper orthogonal decomposition (POD) procedure is used to extract the dominant flame dynamics during the LBO process. By examining the POD modes, the spectral information and the statistical properties of POD coefficients, the effect of hydrogen addition on the LBO processes are analyzed and described in the paper. Results show that in unconfined flames, the shear layer mode along with flame rotation with local quenching and reignition is dominant in the methaneonly case. For the open hydrogen enriched flames, the extinction times are longer and are linked to the lower minimum ignition energy for hydrogen that facilitates reignition events. In confined methane flames, a conical flame is observed and the POD mode representing the burning in the central recirculation zone appears to be dominant. For the 60% hydrogen enriched flame, a columnar burning pattern is observed and the fluctuation energies are evenly spread across several POD modes making this structure more prone to external disturbances and shorter extinction times.
    • Download: (5.352Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Flame Dynamics With Hydrogen Addition at Lean Blowout Limits

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/154701
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorZhu, Shengrong
    contributor authorAcharya, Sumanta
    date accessioned2017-05-09T01:07:36Z
    date available2017-05-09T01:07:36Z
    date issued2014
    identifier issn1528-8919
    identifier othergtp_136_05_051506.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/154701
    description abstractLean premixed combustion is widely used in power generation due to low nitric oxide emissions. Recent interest in syngas requires a better understanding of the role of hydrogen addition on the combustion process. In the present study, the extinction process of hydrogen enriched premixed flames near lean blow out (LBO) in a swirlstabilized combustor has been examined in both unconfined and confined configurations. High speed images of the flame chemiluminescence are recorded, and a proper orthogonal decomposition (POD) procedure is used to extract the dominant flame dynamics during the LBO process. By examining the POD modes, the spectral information and the statistical properties of POD coefficients, the effect of hydrogen addition on the LBO processes are analyzed and described in the paper. Results show that in unconfined flames, the shear layer mode along with flame rotation with local quenching and reignition is dominant in the methaneonly case. For the open hydrogen enriched flames, the extinction times are longer and are linked to the lower minimum ignition energy for hydrogen that facilitates reignition events. In confined methane flames, a conical flame is observed and the POD mode representing the burning in the central recirculation zone appears to be dominant. For the 60% hydrogen enriched flame, a columnar burning pattern is observed and the fluctuation energies are evenly spread across several POD modes making this structure more prone to external disturbances and shorter extinction times.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleFlame Dynamics With Hydrogen Addition at Lean Blowout Limits
    typeJournal Paper
    journal volume136
    journal issue5
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4026321
    journal fristpage51506
    journal lastpage51506
    identifier eissn0742-4795
    treeJournal of Engineering for Gas Turbines and Power:;2014:;volume( 136 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian