YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Flashback and Turbulent Flame Speed Measurements in Hydrogen/Methane Flames Stabilized by a Low Swirl Injector at Elevated Pressures and Temperatures

    Source: Journal of Engineering for Gas Turbines and Power:;2014:;volume( 136 ):;issue: 003::page 31502
    Author:
    Beerer, David
    ,
    McDonell, Vincent
    ,
    Therkelsen, Peter
    ,
    Cheng, Robert K.
    DOI: 10.1115/1.4025636
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper reports flashback limits and turbulent flame local displacement speed measurements in flames stabilized by a low swirl injector operated at elevated pressures and inlet temperatures with hydrogen and methane blended fuels. The goal of this study is to understand the physics that relate turbulent flame speed to flashback events at conditions relevant to gas turbine engines. Testing was conducted in an optically accessible single nozzle combustor rig at pressures ranging from 1 to 8 atm, inlet temperatures from 290 to 600 K, and inlet bulk velocities between 20 and 60 m/s for natural gas and a 90%/10% (by volume) hydrogen/methane blend. The propensity of flashback is dependent upon the proximity of the lifted flame to the nozzle that is itself dependent upon pressure, inlet temperature, and bulk velocity. Flashback occurs when the leading edge of the flame in the core of the flow ingresses within the nozzle, even in cases when the flame is attached to the burner rim. In general the adiabatic flame temperature at flashback is proportional to the bulk velocity and inlet temperature and inversely proportional to the pressure. The unburned reactant velocity field approaching the flame was measured using a laser Doppler velocimeter with water seeding. Turbulent displacement flame speeds were found to be linearly proportional to the root mean square of the velocity fluctuations about the mean velocity. For identical inlet conditions, highhydrogen flames had a turbulent flame local displacement speed roughly twice that of natural gas flames. Pressure, inlet temperature, and flame temperature had surprisingly little effect on the local displacement turbulent flame speed. However, the flow field is affected by changes in inlet conditions and is the link between turbulent flame speed, flame position, and flashback propensity.
    • Download: (2.064Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Flashback and Turbulent Flame Speed Measurements in Hydrogen/Methane Flames Stabilized by a Low Swirl Injector at Elevated Pressures and Temperatures

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/154652
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorBeerer, David
    contributor authorMcDonell, Vincent
    contributor authorTherkelsen, Peter
    contributor authorCheng, Robert K.
    date accessioned2017-05-09T01:07:24Z
    date available2017-05-09T01:07:24Z
    date issued2014
    identifier issn1528-8919
    identifier othergtp_136_03_031502.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/154652
    description abstractThis paper reports flashback limits and turbulent flame local displacement speed measurements in flames stabilized by a low swirl injector operated at elevated pressures and inlet temperatures with hydrogen and methane blended fuels. The goal of this study is to understand the physics that relate turbulent flame speed to flashback events at conditions relevant to gas turbine engines. Testing was conducted in an optically accessible single nozzle combustor rig at pressures ranging from 1 to 8 atm, inlet temperatures from 290 to 600 K, and inlet bulk velocities between 20 and 60 m/s for natural gas and a 90%/10% (by volume) hydrogen/methane blend. The propensity of flashback is dependent upon the proximity of the lifted flame to the nozzle that is itself dependent upon pressure, inlet temperature, and bulk velocity. Flashback occurs when the leading edge of the flame in the core of the flow ingresses within the nozzle, even in cases when the flame is attached to the burner rim. In general the adiabatic flame temperature at flashback is proportional to the bulk velocity and inlet temperature and inversely proportional to the pressure. The unburned reactant velocity field approaching the flame was measured using a laser Doppler velocimeter with water seeding. Turbulent displacement flame speeds were found to be linearly proportional to the root mean square of the velocity fluctuations about the mean velocity. For identical inlet conditions, highhydrogen flames had a turbulent flame local displacement speed roughly twice that of natural gas flames. Pressure, inlet temperature, and flame temperature had surprisingly little effect on the local displacement turbulent flame speed. However, the flow field is affected by changes in inlet conditions and is the link between turbulent flame speed, flame position, and flashback propensity.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleFlashback and Turbulent Flame Speed Measurements in Hydrogen/Methane Flames Stabilized by a Low Swirl Injector at Elevated Pressures and Temperatures
    typeJournal Paper
    journal volume136
    journal issue3
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4025636
    journal fristpage31502
    journal lastpage31502
    identifier eissn0742-4795
    treeJournal of Engineering for Gas Turbines and Power:;2014:;volume( 136 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian