YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Energy Resources Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Investigations of Droplet Deposition and Coalescence in Curved Pipes

    Source: Journal of Energy Resources Technology:;2014:;volume( 136 ):;issue: 002::page 22902
    Author:
    Nguyen, Hung
    ,
    Wang, Shoubo
    ,
    Mohan, Ram S.
    ,
    Shoham, Ovadia
    ,
    Kouba, Gene
    DOI: 10.1115/1.4026916
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Even though there have been several studies conducted by the industry on the use of different inlet devices for gas–liquid separation, there have been limited laboratory and field evaluations on the use of external piping configurations as flow conditioning devices upstream of a separator inlet. The results of a systematic study of droplet deposition and coalescence in curved pipe and pipe fittings are reported in this paper. A facility has been designed consisting of two main test sections: a fixed horizontal straight pipe section and an interchangeable 180 deg return pipe section (or curved pipe section) of the same length. Both inlet and outlet to the 180 deg return are horizontal, but the plane of the 180 deg return pipe section can pivot about the axis of the inlet horizontal pipe to an angle as much as 10 deg downwards allowing downward flow in the return section. Various pipe fittings of different radius of curvature can be installed for comparison in the 180 deg return. Fittings evaluated in this study included: 180 deg pipe bend, short elbow bend (with standard radius of curvature of 1.5D), long elbow bend (with custom radius of curvature of 6D), target tee bend, and cushion tee bend. Experiments have been carried out using water and air, and varying gas velocities and liquid loadings. In order to compare the performance of geometries, Droplet Deposition Fractions (DDF) were measured in the horizontal straight pipe section and in the 180 deg return pipe section as a measure of coalescence efficiency. The results demonstrate that higher DDF occurs for curved fittings as compared to the straight pipe section. The short elbow bend has approximately 10% DDF higher, whereas long elbow bend along with 180 deg pipe bend perform better (by 15–20% DDF) than straight pipe. It was found that the cushion tee and target tee bends can coalesce droplets at lower gas velocities but break up droplets at higher gas velocities. Additionally, no significant differences between DDF's in three different inclination angles of a curved pipe were observed. It can be concluded that 180 deg pipe bend or two 6D long radius elbow bend can serve as a droplet coalescer; a pair of cushion tees or target tees can also work as coalescers at low kinetic energy but as atomizers at high kinetic energy.
    • Download: (1.013Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Investigations of Droplet Deposition and Coalescence in Curved Pipes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/154552
    Collections
    • Journal of Energy Resources Technology

    Show full item record

    contributor authorNguyen, Hung
    contributor authorWang, Shoubo
    contributor authorMohan, Ram S.
    contributor authorShoham, Ovadia
    contributor authorKouba, Gene
    date accessioned2017-05-09T01:07:06Z
    date available2017-05-09T01:07:06Z
    date issued2014
    identifier issn0195-0738
    identifier otherjert_136_02_022902.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/154552
    description abstractEven though there have been several studies conducted by the industry on the use of different inlet devices for gas–liquid separation, there have been limited laboratory and field evaluations on the use of external piping configurations as flow conditioning devices upstream of a separator inlet. The results of a systematic study of droplet deposition and coalescence in curved pipe and pipe fittings are reported in this paper. A facility has been designed consisting of two main test sections: a fixed horizontal straight pipe section and an interchangeable 180 deg return pipe section (or curved pipe section) of the same length. Both inlet and outlet to the 180 deg return are horizontal, but the plane of the 180 deg return pipe section can pivot about the axis of the inlet horizontal pipe to an angle as much as 10 deg downwards allowing downward flow in the return section. Various pipe fittings of different radius of curvature can be installed for comparison in the 180 deg return. Fittings evaluated in this study included: 180 deg pipe bend, short elbow bend (with standard radius of curvature of 1.5D), long elbow bend (with custom radius of curvature of 6D), target tee bend, and cushion tee bend. Experiments have been carried out using water and air, and varying gas velocities and liquid loadings. In order to compare the performance of geometries, Droplet Deposition Fractions (DDF) were measured in the horizontal straight pipe section and in the 180 deg return pipe section as a measure of coalescence efficiency. The results demonstrate that higher DDF occurs for curved fittings as compared to the straight pipe section. The short elbow bend has approximately 10% DDF higher, whereas long elbow bend along with 180 deg pipe bend perform better (by 15–20% DDF) than straight pipe. It was found that the cushion tee and target tee bends can coalesce droplets at lower gas velocities but break up droplets at higher gas velocities. Additionally, no significant differences between DDF's in three different inclination angles of a curved pipe were observed. It can be concluded that 180 deg pipe bend or two 6D long radius elbow bend can serve as a droplet coalescer; a pair of cushion tees or target tees can also work as coalescers at low kinetic energy but as atomizers at high kinetic energy.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleExperimental Investigations of Droplet Deposition and Coalescence in Curved Pipes
    typeJournal Paper
    journal volume136
    journal issue2
    journal titleJournal of Energy Resources Technology
    identifier doi10.1115/1.4026916
    journal fristpage22902
    journal lastpage22902
    identifier eissn1528-8994
    treeJournal of Energy Resources Technology:;2014:;volume( 136 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian