YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Applied Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Temperature Dependent Modulus of Metals Based on Lattice Vibration Theory

    Source: Journal of Applied Mechanics:;2014:;volume( 081 ):;issue: 004::page 41017
    Author:
    Su, Honghong
    ,
    Fang, Xufei
    ,
    Feng, Xue
    ,
    Yan, Bo
    DOI: 10.1115/1.4025417
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Fundamentally understanding the temperaturedependent modulus is the key issue for materials serving in high temperature environments. This paper proposes a model based on lattice vibration theory to predict the temperaturedependent modulus with respect to isothermal and isentropic assumption. The thermal vibration free energy is expressed as a function of the two independent scalars from the strain tensor and temperature. By using the Einstein theory, we present the analytical expression for the temperaturedependent Young's modulus, bulk modulus, shear modulus, and Poisson's ratio. The theoretical prediction agrees well with the experimental data. The proposed model is further degenerated to Wachtman's empirical equation and provides the physical meaning to the parameters in Wachtman's equation.
    • Download: (214.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Temperature Dependent Modulus of Metals Based on Lattice Vibration Theory

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/153799
    Collections
    • Journal of Applied Mechanics

    Show full item record

    contributor authorSu, Honghong
    contributor authorFang, Xufei
    contributor authorFeng, Xue
    contributor authorYan, Bo
    date accessioned2017-05-09T01:04:47Z
    date available2017-05-09T01:04:47Z
    date issued2014
    identifier issn0021-8936
    identifier otherjam_081_04_041017.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/153799
    description abstractFundamentally understanding the temperaturedependent modulus is the key issue for materials serving in high temperature environments. This paper proposes a model based on lattice vibration theory to predict the temperaturedependent modulus with respect to isothermal and isentropic assumption. The thermal vibration free energy is expressed as a function of the two independent scalars from the strain tensor and temperature. By using the Einstein theory, we present the analytical expression for the temperaturedependent Young's modulus, bulk modulus, shear modulus, and Poisson's ratio. The theoretical prediction agrees well with the experimental data. The proposed model is further degenerated to Wachtman's empirical equation and provides the physical meaning to the parameters in Wachtman's equation.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleTemperature Dependent Modulus of Metals Based on Lattice Vibration Theory
    typeJournal Paper
    journal volume81
    journal issue4
    journal titleJournal of Applied Mechanics
    identifier doi10.1115/1.4025417
    journal fristpage41017
    journal lastpage41017
    identifier eissn1528-9036
    treeJournal of Applied Mechanics:;2014:;volume( 081 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian