YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Investigation of High Pressure Ratio Centrifugal Compressor With Axisymmetric and Nonaxisymmetric Recirculation Device

    Source: Journal of Turbomachinery:;2013:;volume( 135 ):;issue: 003::page 31023
    Author:
    Tamaki, Hideaki
    ,
    Zheng, Xinqian
    ,
    Zhang, Yangjun
    DOI: 10.1115/1.4007579
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Centrifugal compressors used for turbochargers are required to have a wide operating range. A recirculation device, which consists of a bleed slot, an upstream slot, and an annular cavity connecting both slots, is often used with them. It improves the incidence angle of the impeller leading edge, i.e., the blade loading of the inducer, at low flow rates due to the recirculation flow supplied to the compressor inlet. However, the compressor efficiency drops when there is a recirculation flow from the bleed slot to the upstream slot. A one dimensional analysis in the first section of this paper showed that the reduction in the compressor efficiency can be lowered by decreasing the pressure drop or reducing the recirculation flow rate within the recirculation device. This study examined the possibility of improvement in the compressor efficiency by the use of a recirculation device with an asymmetric bleed slot. An impeller of a turbocharger compressor is normally contained in a volute. Since the geometry of the volute is not axisymmetric, the impeller is surrounded by an asymmetric flow field. Hence each impeller passage, which is formed by two adjacent full blades, is operated at a different operating point. This means that some of the passages need the improvement in the blade loading by the recirculation device but others do not. There is a possibility that this is realized by a recirculation device with an asymmetrically distributed bleed slot, called a nonaxisymmetric recirculation device in this paper. If the asymmetric bleed slot shortens the average distance between the bleed slot and upstream slot or reduces the area of the bleed slot, it can reduce the pressure drop or recirculation flow rate within the recirculation deviceand, hence, can improve the compressor efficiency. This study discusses the characteristics of high pressure ratio compressors for turbochargers without the recirculation device and those with the recirculation device with an axisymmetric bleed slot. Furthermore, the effects of nonaxisymmetric recirculation devices on the compressor characteristics are experimentally investigated. Two types of nonaxisymmetric recirculation devices were tested. One had the bleed slot of a sine wave pattern. The other had the bleed slot partially channeled in the circumferential direction. There were appropriate positions relative to the volute for both nonaxisymmetric recirculation devices. The compressor efficiency with nonaxisymmetric recirculation devices was higher than that with axisymmetric recirculation devices and the surge lines of the compressor with nonaxisymmetric recirculation devices were located at a flow rate lower than or equal to those with the axisymmetric recirculation devices.
    • Download: (4.549Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Investigation of High Pressure Ratio Centrifugal Compressor With Axisymmetric and Nonaxisymmetric Recirculation Device

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/153345
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorTamaki, Hideaki
    contributor authorZheng, Xinqian
    contributor authorZhang, Yangjun
    date accessioned2017-05-09T01:03:12Z
    date available2017-05-09T01:03:12Z
    date issued2013
    identifier issn0889-504X
    identifier otherturb_135_3_031023.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/153345
    description abstractCentrifugal compressors used for turbochargers are required to have a wide operating range. A recirculation device, which consists of a bleed slot, an upstream slot, and an annular cavity connecting both slots, is often used with them. It improves the incidence angle of the impeller leading edge, i.e., the blade loading of the inducer, at low flow rates due to the recirculation flow supplied to the compressor inlet. However, the compressor efficiency drops when there is a recirculation flow from the bleed slot to the upstream slot. A one dimensional analysis in the first section of this paper showed that the reduction in the compressor efficiency can be lowered by decreasing the pressure drop or reducing the recirculation flow rate within the recirculation device. This study examined the possibility of improvement in the compressor efficiency by the use of a recirculation device with an asymmetric bleed slot. An impeller of a turbocharger compressor is normally contained in a volute. Since the geometry of the volute is not axisymmetric, the impeller is surrounded by an asymmetric flow field. Hence each impeller passage, which is formed by two adjacent full blades, is operated at a different operating point. This means that some of the passages need the improvement in the blade loading by the recirculation device but others do not. There is a possibility that this is realized by a recirculation device with an asymmetrically distributed bleed slot, called a nonaxisymmetric recirculation device in this paper. If the asymmetric bleed slot shortens the average distance between the bleed slot and upstream slot or reduces the area of the bleed slot, it can reduce the pressure drop or recirculation flow rate within the recirculation deviceand, hence, can improve the compressor efficiency. This study discusses the characteristics of high pressure ratio compressors for turbochargers without the recirculation device and those with the recirculation device with an axisymmetric bleed slot. Furthermore, the effects of nonaxisymmetric recirculation devices on the compressor characteristics are experimentally investigated. Two types of nonaxisymmetric recirculation devices were tested. One had the bleed slot of a sine wave pattern. The other had the bleed slot partially channeled in the circumferential direction. There were appropriate positions relative to the volute for both nonaxisymmetric recirculation devices. The compressor efficiency with nonaxisymmetric recirculation devices was higher than that with axisymmetric recirculation devices and the surge lines of the compressor with nonaxisymmetric recirculation devices were located at a flow rate lower than or equal to those with the axisymmetric recirculation devices.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleExperimental Investigation of High Pressure Ratio Centrifugal Compressor With Axisymmetric and Nonaxisymmetric Recirculation Device
    typeJournal Paper
    journal volume135
    journal issue3
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4007579
    journal fristpage31023
    journal lastpage31023
    identifier eissn1528-8900
    treeJournal of Turbomachinery:;2013:;volume( 135 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian