Show simple item record

contributor authorTamaki, Hideaki
contributor authorZheng, Xinqian
contributor authorZhang, Yangjun
date accessioned2017-05-09T01:03:12Z
date available2017-05-09T01:03:12Z
date issued2013
identifier issn0889-504X
identifier otherturb_135_3_031023.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/153345
description abstractCentrifugal compressors used for turbochargers are required to have a wide operating range. A recirculation device, which consists of a bleed slot, an upstream slot, and an annular cavity connecting both slots, is often used with them. It improves the incidence angle of the impeller leading edge, i.e., the blade loading of the inducer, at low flow rates due to the recirculation flow supplied to the compressor inlet. However, the compressor efficiency drops when there is a recirculation flow from the bleed slot to the upstream slot. A one dimensional analysis in the first section of this paper showed that the reduction in the compressor efficiency can be lowered by decreasing the pressure drop or reducing the recirculation flow rate within the recirculation device. This study examined the possibility of improvement in the compressor efficiency by the use of a recirculation device with an asymmetric bleed slot. An impeller of a turbocharger compressor is normally contained in a volute. Since the geometry of the volute is not axisymmetric, the impeller is surrounded by an asymmetric flow field. Hence each impeller passage, which is formed by two adjacent full blades, is operated at a different operating point. This means that some of the passages need the improvement in the blade loading by the recirculation device but others do not. There is a possibility that this is realized by a recirculation device with an asymmetrically distributed bleed slot, called a nonaxisymmetric recirculation device in this paper. If the asymmetric bleed slot shortens the average distance between the bleed slot and upstream slot or reduces the area of the bleed slot, it can reduce the pressure drop or recirculation flow rate within the recirculation deviceand, hence, can improve the compressor efficiency. This study discusses the characteristics of high pressure ratio compressors for turbochargers without the recirculation device and those with the recirculation device with an axisymmetric bleed slot. Furthermore, the effects of nonaxisymmetric recirculation devices on the compressor characteristics are experimentally investigated. Two types of nonaxisymmetric recirculation devices were tested. One had the bleed slot of a sine wave pattern. The other had the bleed slot partially channeled in the circumferential direction. There were appropriate positions relative to the volute for both nonaxisymmetric recirculation devices. The compressor efficiency with nonaxisymmetric recirculation devices was higher than that with axisymmetric recirculation devices and the surge lines of the compressor with nonaxisymmetric recirculation devices were located at a flow rate lower than or equal to those with the axisymmetric recirculation devices.
publisherThe American Society of Mechanical Engineers (ASME)
titleExperimental Investigation of High Pressure Ratio Centrifugal Compressor With Axisymmetric and Nonaxisymmetric Recirculation Device
typeJournal Paper
journal volume135
journal issue3
journal titleJournal of Turbomachinery
identifier doi10.1115/1.4007579
journal fristpage31023
journal lastpage31023
identifier eissn1528-8900
treeJournal of Turbomachinery:;2013:;volume( 135 ):;issue: 003
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record