YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Heat Transfer
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Effect of Fill Volume on Heat Transfer From Air Cooled Thermosyphons

    Source: Journal of Heat Transfer:;2013:;volume( 135 ):;issue: 004::page 44504
    Author:
    Pappas, Christina A.
    ,
    De Cecchis, Paul M.
    ,
    Jordan, Donald A.
    ,
    Norris, Pamela M.
    DOI: 10.1115/1.4023039
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The effect of fill volume on the heat transfer performance of a cylindrical thermosyphon with an aspect ratio (ratio of the length of the evaporator section to the inner diameter) of 2.33 immersed in a cooling air flow is investigated. The fill volume was systematically varied from 0% to 70.3% of the volume of the evaporator section in a copperwater thermosyphon having an inner diameter of 19 mm. The condenser section was immersed in a uniform air flow in the test section of an open return wind tunnel. The heat transfer rate was measured as a function of evaporator temperature and fill volume, and these results were characterized by three distinct regions. From 0% to roughly 16% fill volume (Region I), the low rate of heat transfer, which is insensitive to fill volume, suggests that dry out may be occurring. In Region II (extending to approximately 58% fill volume), the heat transfer rate increases approximately linearly with fill volume, and increasing evaporator temperature results in decreased rate of heat transfer. Finally, in Region III (from roughly 58–70.3%), the rate of heat transfer increases more rapidly, though still linearly, with fill volume, and increasing evaporator temperature results in increased rate of heat transfer. The thermosyphon rate of heat transfer is greatest at 70.3% fill volume for every evaporator temperature.
    • Download: (426.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Effect of Fill Volume on Heat Transfer From Air Cooled Thermosyphons

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/152088
    Collections
    • Journal of Heat Transfer

    Show full item record

    contributor authorPappas, Christina A.
    contributor authorDe Cecchis, Paul M.
    contributor authorJordan, Donald A.
    contributor authorNorris, Pamela M.
    date accessioned2017-05-09T00:59:40Z
    date available2017-05-09T00:59:40Z
    date issued2013
    identifier issn0022-1481
    identifier otherht_135_04_044504.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/152088
    description abstractThe effect of fill volume on the heat transfer performance of a cylindrical thermosyphon with an aspect ratio (ratio of the length of the evaporator section to the inner diameter) of 2.33 immersed in a cooling air flow is investigated. The fill volume was systematically varied from 0% to 70.3% of the volume of the evaporator section in a copperwater thermosyphon having an inner diameter of 19 mm. The condenser section was immersed in a uniform air flow in the test section of an open return wind tunnel. The heat transfer rate was measured as a function of evaporator temperature and fill volume, and these results were characterized by three distinct regions. From 0% to roughly 16% fill volume (Region I), the low rate of heat transfer, which is insensitive to fill volume, suggests that dry out may be occurring. In Region II (extending to approximately 58% fill volume), the heat transfer rate increases approximately linearly with fill volume, and increasing evaporator temperature results in decreased rate of heat transfer. Finally, in Region III (from roughly 58–70.3%), the rate of heat transfer increases more rapidly, though still linearly, with fill volume, and increasing evaporator temperature results in increased rate of heat transfer. The thermosyphon rate of heat transfer is greatest at 70.3% fill volume for every evaporator temperature.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleThe Effect of Fill Volume on Heat Transfer From Air Cooled Thermosyphons
    typeJournal Paper
    journal volume135
    journal issue4
    journal titleJournal of Heat Transfer
    identifier doi10.1115/1.4023039
    journal fristpage44504
    journal lastpage44504
    identifier eissn1528-8943
    treeJournal of Heat Transfer:;2013:;volume( 135 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian