Show simple item record

contributor authorPappas, Christina A.
contributor authorDe Cecchis, Paul M.
contributor authorJordan, Donald A.
contributor authorNorris, Pamela M.
date accessioned2017-05-09T00:59:40Z
date available2017-05-09T00:59:40Z
date issued2013
identifier issn0022-1481
identifier otherht_135_04_044504.pdf
identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/152088
description abstractThe effect of fill volume on the heat transfer performance of a cylindrical thermosyphon with an aspect ratio (ratio of the length of the evaporator section to the inner diameter) of 2.33 immersed in a cooling air flow is investigated. The fill volume was systematically varied from 0% to 70.3% of the volume of the evaporator section in a copperwater thermosyphon having an inner diameter of 19 mm. The condenser section was immersed in a uniform air flow in the test section of an open return wind tunnel. The heat transfer rate was measured as a function of evaporator temperature and fill volume, and these results were characterized by three distinct regions. From 0% to roughly 16% fill volume (Region I), the low rate of heat transfer, which is insensitive to fill volume, suggests that dry out may be occurring. In Region II (extending to approximately 58% fill volume), the heat transfer rate increases approximately linearly with fill volume, and increasing evaporator temperature results in decreased rate of heat transfer. Finally, in Region III (from roughly 58–70.3%), the rate of heat transfer increases more rapidly, though still linearly, with fill volume, and increasing evaporator temperature results in increased rate of heat transfer. The thermosyphon rate of heat transfer is greatest at 70.3% fill volume for every evaporator temperature.
publisherThe American Society of Mechanical Engineers (ASME)
titleThe Effect of Fill Volume on Heat Transfer From Air Cooled Thermosyphons
typeJournal Paper
journal volume135
journal issue4
journal titleJournal of Heat Transfer
identifier doi10.1115/1.4023039
journal fristpage44504
journal lastpage44504
identifier eissn1528-8943
treeJournal of Heat Transfer:;2013:;volume( 135 ):;issue: 004
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record