YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Engineering for Gas Turbines and Power
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Modeling and Validation of the Nonlinear Dynamic Behavior of Bolted Flange Joints

    Source: Journal of Engineering for Gas Turbines and Power:;2013:;volume( 135 ):;issue: 012::page 122504
    Author:
    Schwingshackl, C. W.
    ,
    Di Maio, D.
    ,
    Sever, I.
    ,
    Green, J. S.
    DOI: 10.1115/1.4025076
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Linear dynamic finite element analysis can be considered very reliable today for the design of aircraft engine components. Unfortunately, when these individual components are built into assemblies, the level of confidence in the results is reduced since the joints in the real structure introduce nonlinearity that cannot be reproduced with a linear model. Certain types of nonlinear joints in an aircraft engine, such as underplatform dampers and blade roots, have been investigated in great detail in the past, and their design and impact on the dynamic response of the engine is now well understood. With this increased confidence in the nonlinear analysis, the focus of research now moves towards other joint types of the engine that must be included in an analysis to allow an accurate prediction of the engine behavior. One such joint is the bolted flange, which is present in many forms on an aircraft engine. Its main use is the connection of different casing components to provide the structural support and gas tightness to the engine. This flange type is known to have a strong influence on the dynamics of the engine carcase. A detailed understanding of the nonlinear mechanisms at the contact is required to generate reliable models and this has been achieved through a combination of an existing nonlinear analysis capability and an experimental technique to accurately measure the nonlinear damping behavior of the flange. Initial results showed that the model could reproduce the correct characteristics of flange behavior, but the quantitative comparison was poor. From further experimental and analytical investigations it was identified that the quality of the flange model is critically dependent on two aspects: the steady stress/load distribution across the joint and the number and distribution of nonlinear elements. An improved modeling approach was developed that led to a good correlation with the experimental results and a good understanding of the underlying nonlinear mechanisms at the flange interface.
    • Download: (3.144Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Modeling and Validation of the Nonlinear Dynamic Behavior of Bolted Flange Joints

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/151741
    Collections
    • Journal of Engineering for Gas Turbines and Power

    Show full item record

    contributor authorSchwingshackl, C. W.
    contributor authorDi Maio, D.
    contributor authorSever, I.
    contributor authorGreen, J. S.
    date accessioned2017-05-09T00:58:38Z
    date available2017-05-09T00:58:38Z
    date issued2013
    identifier issn1528-8919
    identifier othergtp_135_12_122504.pdf
    identifier urihttp://yetl.yabesh.ir/yetl/handle/yetl/151741
    description abstractLinear dynamic finite element analysis can be considered very reliable today for the design of aircraft engine components. Unfortunately, when these individual components are built into assemblies, the level of confidence in the results is reduced since the joints in the real structure introduce nonlinearity that cannot be reproduced with a linear model. Certain types of nonlinear joints in an aircraft engine, such as underplatform dampers and blade roots, have been investigated in great detail in the past, and their design and impact on the dynamic response of the engine is now well understood. With this increased confidence in the nonlinear analysis, the focus of research now moves towards other joint types of the engine that must be included in an analysis to allow an accurate prediction of the engine behavior. One such joint is the bolted flange, which is present in many forms on an aircraft engine. Its main use is the connection of different casing components to provide the structural support and gas tightness to the engine. This flange type is known to have a strong influence on the dynamics of the engine carcase. A detailed understanding of the nonlinear mechanisms at the contact is required to generate reliable models and this has been achieved through a combination of an existing nonlinear analysis capability and an experimental technique to accurately measure the nonlinear damping behavior of the flange. Initial results showed that the model could reproduce the correct characteristics of flange behavior, but the quantitative comparison was poor. From further experimental and analytical investigations it was identified that the quality of the flange model is critically dependent on two aspects: the steady stress/load distribution across the joint and the number and distribution of nonlinear elements. An improved modeling approach was developed that led to a good correlation with the experimental results and a good understanding of the underlying nonlinear mechanisms at the flange interface.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleModeling and Validation of the Nonlinear Dynamic Behavior of Bolted Flange Joints
    typeJournal Paper
    journal volume135
    journal issue12
    journal titleJournal of Engineering for Gas Turbines and Power
    identifier doi10.1115/1.4025076
    journal fristpage122504
    journal lastpage122504
    identifier eissn0742-4795
    treeJournal of Engineering for Gas Turbines and Power:;2013:;volume( 135 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian